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Abstract. We show existence and uniqueness results for nonlinear parabolic
equations in noncylindrical domains with possible jumps in the time variable.
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1. Introduction

In recent years there has been a renewed interest in problems related with
partial differential equations formulated in domains that change in time. This is
partly due to the fact that a number of problems in mathematical biology are
naturally posed on growing domains (e.g. developing organisms or proliferating
cells, see for instance [14, 21, 23]) or domains that evolve in some particular way.
Such issues have originated a wide amount of mathematical research, let us men-
tion [6, 15, 16, 30]. To this we should add more classical engineering applications
like fluids or gases in settings as channels or pipes with confining walls that may
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operators.
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2 JUAN CALVO, MATTEO NOVAGA, AND GIANDOMENICO ORLANDI

be displaced, removed or brought in at will. A sample of different applications
of partial differential equations in evolving domains can be found in the recent
survey paper [22]. In fact, it is not hard to conjecture that new applications
will involve equations in moving domains in the future. Apart from that, partial
differential equations posed on non-cylindrical domains are interesting also from
the purely mathematical point of view.

This has led to an outburst of works on this subject in the literature that
added up to some classical works [5, 11, 13, 24, 25, 35] to the extent that the
number of current references is overwhelming. Let us comment on this litera-
ture according to the approach, the assumptions on the evolution of the domain
where the equation is posed and the types of equations considered. Many au-
thors used semigroup methods to tackle these problems (see for instance [2, 28]
and references therein), but other approaches include adding a time viscosity [9],
mapping the spacetime domain to a cylindrical domain [4] or use De Giorgi’s
minimizing movements [7, 20]. As regards time variations of the domain, it is
customary to impose some sort of continuity (for instance Lipschitz continuity
[31], relaxed to Hölder continuity in [9] and to absolute continuity in [29]), alter-
natively a monotonicity condition can be used (i.e., expanding domains [7, 20]) or
Reinfenberg-type domains can be considered [12]. Concerning the type of equa-
tions, most of the works focus on parabolic equations which are assumed to be
linear or in divergence form (see however [8, 9, 28, 29] where also other operators
are admitted).

In this paper we are interested in well-posedness of parabolic equations in
divergence form, in bounded domains that evolve in time. More precisely, we
deal with the Cauchy–Dirichlet problem, in a formulation that allows boundary
conditions to depend on time.

Let us discuss what are the novelties of this work with respect to the already
existing literature. First, we introduce a simple approach to construct solutions,
which consists in performing a time slicing of the domain, and then solve a
family of approximating equations in cylindrical domains. The simplicity of this
approach may allow to use it as a starting point for devising numerical methods
for this sort of problems. Despite its simplicity, we are not aware of other works
where such a slicing strategy is used. Our approach allows to deal with nonlinear
equations, which include the parabolic p-Laplacian as a particular case. Also, our
slicing technique allows us to deal with very general variations on the domain over
time: We only require them to be of bounded variation, allowing for sudden jumps
(expansions or contractions) of the domain. In particular, we do not impose any
constraint on the topology of the evolving domains, which may differ from that
of the initial domain. We are also able to prove uniqueness if the set of jumps
has a reasonable structure (see Section 5).

To our best knowledge, this generality has not been previously achieved in
the literature, except for the case of purely expanding domains [7]. However,
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when this paper was close to completion, we learned about the contribution by
F. Paronetto in [29]. Although he uses a different method and does not strive for
the most general result, his work can be extended to cover quite general operators
and boundary conditions.
Possible extensions. Since our main goal is presenting a method to tackle par-
abolic equations in moving domains, we did not focus on looking for the most
general possible result. For instance, for the sake of simplicity we chose to deal
only with bounded initial data. We stress that our main idea is to use a time
slicing to approximate the original problem by a sequence of problems defined on
cylindrical domains. As we do not focus on any particular equation, we chose to
use abstract Lions’ theory to provide existence for the approximating problems.
However, we could also use other theories as starting point to provide existence
of approximate solutions. If we are interested in a particular equation (the p-
Laplace equation, say) then we will likely be using specific existence results to
set up our method, and those will provide a much more accurate framework for
the admisible set of initial conditions.

In that line of though, the fact that our present formulation does not allow
to deal with degenerate equations, such as the porous media equation and its
variants, could appear as a drawback. Again, we argue that suitable modifications
of the method here proposed would allow to tackle these problems. In fact, even
sticking to Lions’ theory, porous media equation and related ones can be treated
by making use of the compactness results by Dubinskii [18], carefully adapting
our arguments in order to cope with that (see [26], Chapter I, 12). We did not
pursue this line here in order to keep the presentation as simple as possible.

We also point out that we cannot deal with operators with linear growth such
as the total variation flow or the parabolic minimal surface equation (see [8]
for some results in this direction in the one-dimensional case). This is another
challenging line to explore. Finally, following the same approach it should be
possible to consider similar evolution equations on manifolds evolving in time
(see [3] and references therein).

Acknowledgements. This problem was proposed to us by our friend and collegue
Vicent Caselles. Without his contribution and suggestions this work would not
have been possible, and we dedicate it to his memory.

J.C. was supported in part by MINECO (Spain) Project MTM2011-23384,
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2. Standing assumptions and main results

Our purpose is to prove existence and uniqueness results for nonlinear parabolic
equations with time dependent coefficients in time dependent domains. More

precisely, given an open set Ω̃ ⊂ [0, T ] × IRd we shall consider the following
problem:

(2.1)


ut(t, x) = div (A(t, x, u,∇u)) in Ω̃,

u(0, x) = u0(x) in Ω(0),

u(t, x) = ψ(t, x) in ∂lΩ̃ ∪ ∂−1Ω̃,

where we let νΩ̃ = (νt, νx) be the outer unit normal to ∂Ω̃, Ω(0) is the initial
domain defined in Assumption 2.2, and we set

∂±1Ω̃ := {(t, x) ∈ ∂Ω̃ : t > 0, νt = ±1},

∂+Ω̃ := {(t, x) ∈ ∂Ω̃ : νt > 0},

∂lΩ̃ := {(t, x) ∈ ∂Ω̃ : |νt| < 1} = {(t, x) ∈ ∂Ω̃ : |νx| > 0}.
In order to establish existence and uniqueness of solutions, we shall make suit-

able assumptions on the flux vector field A, the data u0, ψ and the domain Ω̃.

Assumption 2.1. The set Ω̃ ⊂ [0, T ]× IRd is a bounded open set with Lipschitz
boundary, and we let

Ω(t) := {x ∈ IRd : (t, x) ∈ Ω̃} t ∈ (0, T ).

Without loss of generality we may assume that Ω(t) is an open set for all t ∈
(0, T ).

Notice that Ω(t) has Lipschitz boundary for a.e. t ∈ [0, T ], and there exist the
limits

(2.2) Ω(t±) := lim
s→t±

Ω(s) for all t ∈ [0, T ],

where the limit is taken in the Hausdorff topology.

Assumption 2.2. The set Ω(0) := Ω(0+) is open and has Lipschitz boundary.

Next we describe our assumptions on the operator A. Let Q0 be an open set
of IRd such that ∪t∈[0,T ]Ω(t) ⊂⊂ Q0 and let QT := [0, T ] × Q0. We shall denote
by M(QT ) the space of all Radon measures on QT .

Assumption 2.3. The function A : QT × IR× IRd → IRd is a Carathéodory map
satisfying
(2.3)
|A(t, x, z, ξ)| ≤ c|ξ|p−1 + b(t, x), c > 0, b ∈ Lp′(QT ), 1 < p <∞, 1

p
+ 1

p′
= 1,

(2.4) A(t, x, z, ξ) · ξ ≥ α|ξ|p − d(t, x), α > 0, d ∈ L1(QT ),
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(2.5) (A(t, x, z, ξ)− A(t, x, z, ξ∗)) · (ξ − ξ∗) ≥ 0,

for a.e. (t, x) ∈ QT , and for all z ∈ IR, ξ, ξ∗ ∈ IRd. Moreover, we assume that

(2.6) |A(t, x, z, ξ)− A(s, y, w, ξ)| ≤ (ω(|t− s|+ |x− y|) + C|z − w|)|ξ|p−1,

where ω is a modulus of continuity. We assume also that

(2.7) A(t, x, z, 0) = 0 ∀z ∈ IR, a.e. QT .

Note that (2.5) and (2.7) imply that

(2.8) A(t, x, z, ξ) · ξ ≥ 0, a.e. in QT , and for all z ∈ IR, ξ ∈ IRd.

We will consider the problem (2.1) with initial and boundary conditions

(2.9) u(0, x) = u0(x) ∈ L∞(Ω(0)),

(2.10) u(t, x) = ψ(t, x), (t, x) ∈ ∂lΩ̃ ∪ ∂−1Ω̃, t > 0.

Assumption 2.4. We assume that

(2.11) ψ ∈ C((0, T )×Q0) ∩ Lp(0, T ;W 1,p
0 (Q0)),

and

(2.12) ψt ∈ L1((0, T )×Q0) ∩ Lp′(0, T ;W−1,p′(Q0)).

Let us now define the space to which the solutions of our problem belong.

Definition 2.5. Let V be the closure of C1
c (Ω̃) with respect to the norm

||v||V :=

(∫
Ω̃

|∇v|p dxdt
)1/p

, v ∈ C1
c (Ω̃).

Notice that functions in V do not necessarily have zero trace on ∂±1Ω̃ or on Ω(0).

Our concept of solution will be the following:

Definition 2.6. We say that a function u ∈ L1(Ω̃) is a weak solution of (2.1) if
the following statements hold:

(1) u− ψ ∈ V and A(t, x, u,∇u) ∈ Lp′(Ω̃).

(2) ut ∈ V∗ (note that this implies that u has a trace on ∂±1Ω̃ and on Ω(0)).
(3) u(0) = u0 a.e. on Ω(0) and u = ψ a.e. on every relatively open subset of

∂−1Ω̃.
(4) Let ũ := uχΩ̃ + ψχQT \Ω̃. The time derivative ũt ∈ D′(QT ) is decomposed

uniquely as

ũt = ψtχQT \Ω̃ + ut + ust with ust � Hd

|∂+Ω̃
.
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(5) The following integral formulation
(2.13)

−
∫ T

0

∫
Ω(t)

uφt dxdt−
∫

Ω(0)

u0φ(0) dx+

∫ T

0

∫
Ω(t)

A(t, x, u,∇u) · ∇φ dxdt = 0

holds for all φ ∈ D([0, T )×Q0) with suppφ ⊂⊂ Ω̃.

Let us state the main existence result of this paper:

Theorem 2.7. Let Assumptions 2.1–2.4 be satisfied. Then there exists a weak
solution of (2.1) in the sense of Definition 2.6.

We introduce now some extra constraints on the geometry of the non-cylindrical
domain enabling to show uniqueness:

Assumption 2.8. Let Ω̃ satisfy the following:

(1) ∂−1Ω̃ ∩ ∂+Ω̃ = ∅,
(2) The projection of ∂+1Ω̃ over [0, T ] consists on a finite number of times.

Note that any C1 bounded domain fulfills the conditions in Assumption 2.8. This
is also the case for purely expanding domains with a finite number of jumps in
time.

We now state our main uniqueness result.

Theorem 2.9. Let Assumptions 2.1–2.4 and 2.8 be satisfied. Then the solution
of (2.1) is unique in the class of weak solutions.

3. Construction of approximate solutions

Let us divide the interval [0, T ] into sub-intervals 0 = t0 < t1 < . . . < tN−1 <
tN = T . The points ti are chosen so that:

(1) Ω(ti) has Lipschitz boundary for all i ∈ {0, . . . , N − 1},
(2) (2.3)–(2.7) hold for a.e. x ∈ Ω(ti) and for all z ∈ IR, ξ ∈ IRd,
(3) ti are Lebesgue points of ψ(t) ∈ Lp(0, T ;W 1,p

0 (Q0)) and ψ(ti) ∈ W 1,p(Q0),
(4) ti are Lebesgue points of the map t ∈ [0, T ]→ A(t) ∈ L1(Q0× (−R,R)×

B(0, R)) for any R > 0,
(5) ∆ := maxk=0,...,N−1 |tk − tk+1| → 0 as N →∞.

Let Ik = [tk, tk+1). We iteratively solve the parabolic problem

(3.1)


ukt = div

(
A(tk, x, u

k,∇uk)
)
, t ∈ Ik, x ∈ Ω(tk)

uk(t, x) = ψ(t, x), t ∈ Ik, x ∈ ∂Ω(tk)

uk(tk, x) =

{
limt→tk− u

k−1(t, x), x ∈ Ω(tk) ∩ Ω(tk−1)

ψ(tk, x), x ∈ Ω(tk)\Ω(tk−1).

If t0 = 0 we let u0(0, x) = u0(x). Notice that the iterative initial condition for
t = tk makes sense thanks to the continuity properties of uk−1, see (3.5).



C
R
M

P
re
p
ri
nt

S
er
ie
s
nu
m
b
er

12
04

PARABOLIC EQUATIONS IN TIME DEPENDENT DOMAINS 7

3.1. Study of the model problem on a time slice. Let Ω0 be an open
bounded set in IRd with Lipschitz boundary. Let A(x, z, ξ) be such that (2.3)–
(2.7) hold a.e. in x ∈ Ω0 and for all z ∈ IR, ξ ∈ IRd. Let us consider the
problem

(3.2)


ut = div (A(x, u,∇u)) t ∈ [0, T ], x ∈ Ω0,

u(t, x) = ψ(t, x) t ∈ [0, T ], x ∈ ∂Ω0,

u(0, x) = u0(x) x ∈ Ω0.

where ψ and u0 satisfy (2.9), (2.11) and (2.12).

Definition 3.1. We say that a function u ∈ L1((0, T ) × Ω0) is a weak solution
of (3.2) if u ∈ Lp(0, T ;W 1,p(Ω0)), A(x, u,∇u) ∈ Lp′((0, T )× Ω0)),

(3.3) −
∫ T

0

∫
Ω0

uφt dxdt−
∫ T

0

∫
Ω0

u0φ(0) dx+

∫ T

0

∫
Ω0

A(x, u,∇u) ·∇φ dxdt = 0

holds for all φ ∈ D([0, T )× Ω0), and

u(t)− ψ(t) ∈ W 1,p
0 (Ω0) a.e. t ∈ (0, T ).

Note that, by (2.3), if u ∈ Lp(0, T ;W 1,p(Ω0)), then A(x, u,∇u) ∈ Lp′((0, T )×
Ω0)).

Proposition 3.2. Problem (3.2) admits a unique weak solution in the sense of
Definition 3.1.

Proof. The proof is a standard application of the theory developed in [26, 27]; we
include it for completeness. We consider the auxiliary problem

(3.4)


vt − div

(
Ã(t, x, v,∇v)

)
= −ψt t ∈ [0, T ], x ∈ Ω0,

v(t, x) = 0 t ∈ [0, T ], x ∈ ∂Ω0,

v(0, x) = u0(x)− ψ(0, x) x ∈ Ω0.

Here

Ã(t, x, z, ξ) := A(x, z + ψ(t, x), ξ +∇ψ(t, x)).

According to the notation in [26, 27], we let H = L2(Ω0),

B =

{
W 1,p

0 (Ω0) if p ≥ 2,

W 1,p
0 (Ω0) ∩ L2(Ω0) if 1 < p < 2,

and F = Lp(0, T ;B), so that B is dense in H and

−divÃ : F → F ′ = Lp
′
(0, T ;B′) and ψt ∈ F ′,

with

B′ =

{
W−1,p′(Ω0) if p ≥ 2,

W−1,p′(Ω0) + L2(Ω0) if 1 < p < 2.
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Observe that, by our assumptions on A(x, z, ξ) and ψ, Ã(t, x, z, ξ) is a Leray-Lions
operator (see [26, 27]). Indeed, the monotonicity requirement is satisfied thanks
to (2.5). The coercivity condition follows from (2.4) and Poincare’s inequality in
a standard way (lower order terms are estimated thanks to (2.3)). Then thanks
to Lions’ theory there exists some v ∈ F solving (3.4) in F ′. In fact, this solution
verifies that

v ∈ Lp(0, T, B) and vt ∈ Lp
′
(0, T ;B′).

Hence v ∈ W 1,p′(0, T ;B′); thus, the attainment of the initial condition v0 may be
understood in this sense. Notice that v ∈ C(0, T ;L2(Ω0)) thanks to Lemma 3.3
below.

Let now u = v + ψ. Then u is a weak solution of (3.2) with initial condition
u(0) = u0. Clearly u ∈ Lp(0, T ;B), ut ∈ Lp

′
(0, T ;B′) and

(3.5) u ∈ C(0, T ;L2(Ω0)).

To prove uniqueness let u, v be two different solutions. If A does not depend
on u, recalling (2.5) we have that

1

2

d

dt
(u− v, u− v)H = 〈u− v, (u− v)t〉W 1,p

0 (Ω0)−W−1,p′ (Ω0)

= 〈u− v, div(A(x,∇u)− A(x,∇v))〉W 1,p
0 (Ω0)−W−1,p′ (Ω0)

= −〈∇u−∇v, A(x,∇u)− A(x,∇v)〉Lp(Ω0)−Lp′ (Ω0)

≤ 0 .

Hence ‖u− v‖2 is nonincreasing and uniqueness follows.
For the general case, consider δ > 0, let

Tδ(s) =


s if − δ ≤ s ≤ δ,

−δ if s < −δ,
δ if s > δ,

and compute as follows:

1

2

d

dt
(u− v, Tδ(u− v)/δ)H

= −1

δ
〈∇Tδ(u− v), A(x, u,∇u)− A(x, v,∇v)〉Lp(Ω0)−Lp′ (Ω0)

≤ −1

δ
〈(∇u−∇v)χ{|u−v|≤δ}, A(x, u,∇v)− A(x, v,∇v)〉Lp(Ω0)−Lp′ (Ω0).
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Then, using (2.6) we get

1

2

d

dt
(u− v, Tδ(u− v)/δ)H ≤

C

δ

∫
{|u−v|≤δ}

|u− v||∇u−∇v||∇v|p−1 dx

≤ C

∫
{|u−v|≤δ}

|∇u−∇v||∇v|p−1 dx.

The term on the far right converges to zero when δ → 0, since the integrand is
in L1(Ω0) and ∇(u− v) = 0 a.e. where u− v = 0. As Tδ/δ(u− v)→ sign(u− v),
we get that ‖u− v‖1 is non-increasing, and we conclude the proof. �

The following continuity result is standard (see for instance [26, Ch. 2, Rem. 1.2]
or [32]).

Lemma 3.3. Let V be a reflexive Banach space with dual V ′. Let H be a Hilbert
space that we identify with its dual. Assume that V ⊂ H ⊂ V ′ with the injection
V ⊂ H being dense. Then, u ∈ Lp(0, T ;V ) together with ut ∈ Lp

′
(0, T ;V ′) imply

that there is a representative of u which is continuous from [0, T ] to H.

Since uk ∈ C(tk, tk+1;L2(Ω(tk))) we can define the traces

uk(tk+) := lim
t→tk+

uk(t) uk(tk+1−) := lim
t→tk+1−

uk(t),

where the limit is taken in L2(Ω(tk)).

3.2. The approximate solutions u∆. We now let

Ω∆ := {(t, x) : t ∈ [tk, tk+1), x ∈ Ω(tk), k = 0, . . . , N − 1}

= ∪k=1,...N−1[tk, tk+1)× Ω(tk).

Notice that Ω∆ does not depend only on ∆ = maxk=0,...,N−1 |tk−tk+1|, but depends
on the entire sequence {tk}k.

Lemma 3.4. Ω∆ converges to Ω̃ in the Hausdorff sense. As a consequence χΩ∆ →
χΩ̃ strongly in L1(QT ) (hence in Lp(QT ) for all p <∞).

Proof. The Hausdorff convergence of Ω∆ to Ω̃ can be easily verified when Ω̃ is

a polyhedron. The claim follows by approximating a generic Ω̃ with Lipschitz
boundary with polyhedra, in the topology generated by the Hausdorff distance.

�

We now glue the solutions uk(t, x) of (3.1) together and define the approximate
solutions

u∆(t, x) :=
N−1∑
k=0

χ[tk,tk+1)(t)u
k(t, x)χΩ(tk)(x),(3.6)
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ũ∆(t, x) :=
N−1∑
k=0

χ[tk,tk+1)(t)(u
k(t, x)χΩ(tk)(x) + ψ(t, x)χQ0\Ω(tk)(x)),(3.7)

for (t, x) ∈ QT . When we write uk(t, x)χΩ(tk)(x) in the above formulae we intend
the function which coincides with uk(t, x) in Ω(tk) and it is equal to zero outside
Ω(tk).

In the sequel we shall prove the compactness of u∆ and ũ∆ as ∆→ 0.

3.3. Estimates on u∆. We now derive some estimates on the approximate so-
lutions u∆ defined in (3.6).

Lemma 3.5. Assume that ‖ψ‖∞, ‖u0‖∞ ≤ C for some C > 0. Then ‖u∆‖L∞(Ω∆)

≤ C for any t > 0.

Proof. It is enough to prove the estimate in (0, t1) × Ω(0). Let [·]+ denote the
positive part (resp. [·]− the negative part) and let C > 0. We compute

1

2

d

dt

∫
Ω(0)

([u∆(t)− C]+)2 dx =

∫
Ω(0)

[u∆ − C]+divA(0, x, u∆,∇u∆) dx

= −
∫

Ω(0)

A(0, x, u∆,∇u∆)∇([u∆ − C]+) dx

+

∫
∂Ω(0)

A(0, x, u∆,∇u∆) · νΩ(0)[ψ − C]+ dHd−1.

The second term above vanishes if ψ ≤ C. As for the first term, note that
∇([u∆ − C]+) = χ{u∆>C}∇u∆, so that we can use (2.8) to ensure that it is
nonpositive. Hence,∫

Ω(0)

([u∆(t)− C]+)2 dx ≤
∫

Ω(0)

([u0 − C]+)2 dx.

Thus, if u0 ≤ C then u∆(t) ≤ C too for any t ∈ [0, t1). This works in the same way
for the time derivative of the integral of ([u∆ +C]−)2, with inequalities reversed.
If we now choose C = max{‖u0‖∞, ‖ψ‖∞}, we deduce that ‖u∆(t)‖∞ ≤ C. �

Lemma 3.6. There holds
N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|∇u∆(t)|p dxdt ≤ C,

for some constant C > 0 depending only on Ω̃, on ψ and on the structural con-
stants in Assumption 2.3.

Proof. Fix k and compute for any t ∈ (tk, tk+1)

1

2

d

dt

∫
Ω(tk)

(u∆−ψ)2 dx = −
∫

Ω(tk)

∇(u∆−ψ)A(tk, x, u
∆,∇u∆) dx−

∫
Ω(tk)

(u∆−ψ)ψt dx.
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Notice that the last term is well-defined thanks to our assumptions on ψ and to
Lemma 3.5. Integrating the former equality on [tk, tk+1], we obtain

1

2

∫
Ω(tk)

(u∆(tk+1)− ψ)2 dx =
1

2

∫
Ω(tk)

(u∆(tk)− ψ)2 dx

−
∫ tk+1

tk

∫
Ω(tk)

(u∆ − ψ)ψt dxdt

+

∫ tk+1

tk

∫
Ω(tk)

∇ψA(tk, x, u
∆,∇u∆) dxdt

−
∫ T

0

∫
Ω(tk)

∇u∆A(tk, x, u
∆,∇u∆) dxdt

=: I + II + III + IV.

Let us now control the last three terms. The second one can be easily estimated
as

II ≤ 2C̄

∫ tk+1

tk

∫
Ω(tk)

|ψt| dxdt, C̄ := max{‖ψ‖∞, ‖u0‖∞}.

Concerning the fourth term, using (2.4) we get

IV ≤ −
∫ tk+1

tk

∫
Ω(tk)

α|∇u∆|p dxdt+

∫ tk+1

tk

∫
Ω(tk)

|d(t, x)| dxdt.

In a similar way, using (2.3) we obtain

III ≤
∫ tk+1

tk

∫
Ω(tk)

c|∇ψ||∇u∆|p−1 dxdt+

∫ tk+1

tk

∫
Ω(tk)

|∇ψ|b(t, x) dxdt = A+B.

Let us estimate A and B. For that we use Young’s inequality with weights:

a b ≤ εpap

p
+

bp
′

p′εp′
, ε > 0, being p, p′ given by (2.3).

Then

B ≤ 1

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk)) +

1

p′
‖b‖p

Lp′ ([tk,tk+1]×Ω(tk))

and

A ≤ cεp

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk)) +

c

p′εp′
‖∇u∆‖pLp([tk,tk+1]×Ω(tk))
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for any ε > 0. Let us choose ε so that c/(p′εp
′
) = α/2. Collecting all the estimates,

we obtain

1

2

∫
Ω(tk)

(u∆(tk+1)− ψ)2 dx+
α

2

∫ tk+1

tk

∫
Ω(tk)

|∇u∆|p dxdt

≤ 1

2

∫
Ω(tk)

(u∆(tk)− ψ)2 dx+ 2C̄

∫ tk+1

tk

∫
Ω(tk)

|ψt| dxdt+
cεp

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk))

+
1

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk)) +

1

p′
‖b‖p

Lp′ ([tk,tk+1]×Ω(tk))
+

∫ tk+1

tk

∫
Ω(tk)

|d(t, x)| dxdt.

By summing up the previous inequality from k = 0 to k = N − 1, we get

1

2

∫
Ω(tN−1)

(u∆(tN)− ψ)2 dx+
α

2

N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|∇u∆(t)|p dxdt

≤ 1

2

∫
Ω(0)

(u∆(0)− ψ)2 dx+
1

p′

N−1∑
k=0

‖b‖p
Lp′ ([tk,tk+1]×Ω(tk))

+
1

p

(
1 + c

(
2c

αp′

) p
p′
)

N−1∑
k=0

‖∇ψ‖pLp([tk,tk+1]×Ω(tk))

+ 2C̄
N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|ψt| dxdt+
N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|d(t, x)| dxdt.

On the aid of Lemma 3.5 the thesis follows. �

Recalling the definition of ũ∆ and the assumptions on ψ, from Lemma 3.6 we
obtain the following result:

Corollary 3.7. There exists C > 0 depending only on Ω̃, on ψ and on the
structural constants in Assumption 2.3, such that

‖ũ∆‖Lp(0,T ;W 1,p(Q0)) ≤ C .

In particular, the sequence {ũ∆} is weakly relatively compact in Lp(0, T ;W 1,p(Q0)).

3.4. Time compactness of ũ∆. We now show a stronger compactness property
of u∆. For this aim, we need the following result, proved in [33].

Theorem 3.8. Let X,B, Y be three Banach spaces such that X ⊂ B ⊂ Y .
Assume that X is compactly embedded in B and

(3.8) F is a bounded set in L1(0, T ;X),

(3.9) ‖τhf − f‖L1(0,T−h;Y ) → 0 as h→ 0, uniformly for f ∈ F .

Then F is relatively compact in L1(0, T ;B).
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Let

ψ∆(t, x) :=
N−1∑
k=0

χ[tk,tk+1)(t)ψ(t, x)χQ0\Ω(tk)(x) = ψ(t, x)χQT \Ω∆(t, x),

so that we have ũ∆(t, x) = u∆(t, x) + ψ∆(t, x).

Lemma 3.9. Let 0<k≤N be fixed. Then ukt (t)χΩ(tk)∈Lp
′
(tk, tk+1,W

−1,p′(Ω(tk)))
and the following estimate holds:

‖ukt (t)χΩ(tk)‖Lp′ (tk,tk+1,W−1,p′ (Ω(tk))) ≤

c‖u∆‖p−1
Lp(tk,tk+1,W 1,p(Ω(tk))) + ‖b‖Lp(tk,tk+1,Lp′ (Ω(tk))).

Proof. We show the estimate by duality. Let φ ∈ Lp(tk, tk+1,W
1,p
0 (Ω(tk))). We

compute

〈ukt (t)χΩ(tk), φ〉 = −
∫ tk+1

tk

∫
Ω(tk)

A(tk, x, u
k,∇uk(t)) · ∇φ dxdt.

Hence using (2.3)

|〈uktχΩ(tk), φ〉| ≤
∫ tk+1

tk

∫
Ω(tk)

(c|∇u∆(t)|p−1 + b(t, x))|∇φ|dxdt

≤
∫ tk+1

tk

(
c‖u∆(t)‖p−1

W 1,p(Ω(tk)) + ‖b(t)‖Lp′ (Ω(tk))

)
‖φ‖W 1,p

0 (Ω(tk)) dt.

The result follows. �

Lemma 3.10. The sequence {ũ∆} is relatively compact in L1
loc(Ω̃).

Proof. We consider a cylinder C := [t1, t2] × K ⊂⊂ Ω̃. We want to apply
Theorem 3.8 with f = ũ∆|C = u∆|C , X = W 1,p(K), B = L1(K) and Y =
W−1,p′(K) + L1(K). Here Y is a Banach space equipped with the norm

‖y‖Y := inf{‖y1‖W−1,p′ (K) + ‖y2‖L1(K) : y1 + y2 = y}.

Then X ⊂ B ⊂ Y and X is compactly embedded in B.

Notice that, since C ⊂⊂ Ω̃, we have

ũ∆
t |C = u∆

t |C =
N−1∑
k=0

χ[tk,tk+1)(t)u
k
t (t, x)χΩ(tk)(x)|C for N large enough.
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Estimate (3.8) directly follows from Lemma 3.5. In order to prove (3.9), we
notice that (with a slight abuse of notation) there holds that

ũ∆(t+ h)− ũ∆(t) =

∫ t+h

t

ũ∆
t (s) ds

=

∫ t+h

t

N−1∑
k=0

χ[tk,tk+1)(t)u
k
t (s, x)χΩ(tk)(x) ds := u∆

1 (t, h).

We claim that

(3.10)

∫ t2−h

t1

‖u∆
1 (t, h)‖W−1,p′ (K) dt→ 0 as h→ 0+

uniformly in N ; this would imply (3.9). To prove it we sum up all the estimates
coming from Lemma 3.9 for different values of k in order to cover the cylinder
C. We learn that there exist C̃ > 0 independent of N and t ∈ [t1, t2] such that
‖u1(t, h)∆‖Y ≤ C̃h, which implies (3.10). Hence ũ∆ is strongly compact in L1(C).

Now any compact set in Ω̃ can be covered by a finite number of open cylinders.

To conclude we take a countable sequence of compact sets embedded in Ω̃ whose

increasing union exhausts Ω̃ and apply a diagonal procedure. �

Corollary 3.11. There exists a subsequence of {ũ∆} which converges strongly in
L1(QT ).

Proof. We can combine Lemma 3.10 with the uniform bound provided by Lemma
3.5 to use Lebesgue’s dominated convergence theorem. Note that the functions
are constantly equal to ψ outside Ω∆ and that Lemma 3.4 applies. �

4. Existence of solutions

In this section we prove the existence of weak solutions of (2.1).

4.1. Convergence of the approximate solutions.

Lemma 4.1. There are functions ũ, u such that the following statements hold
(up to extracting a subsequence) for N →∞:

1) ũ∆ ⇀ ũ weakly in Lp(0, T,W 1,p(Q0)) ∩ L∞(QT ),
2) ũ∆ → ũ in L1(QT ) and a.e. in QT ,
3) ψ∆ → ψχQT \Ω̃ in L1(QT )and a.e. in QT ,

4) u∆ → u in L1(Ω̃),
5) ũ = u+ ψχQT \Ω̃ and u = ũχΩ̃.

Proof. The first statement follows from Lemma 3.5 and Corollary 3.7. The second
statement follows from Corollary 3.11. To prove the third statement we write

‖ψ∆ − ψχQT \Ω̃‖L1(QT ) ≤ ‖ψ‖L∞(QT )‖χQT \Ω∆ − χQT \Ω̃‖L1(QT ) → 0
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as N →∞, thanks to Lemma 3.4. It follows that

u∆ = ũ∆ − ψ∆ → u := ũ− ψχQT \Ω̃ in L1(Ω̃).

Since Ω∆ → Ω̃ by Lemma 3.4, we get that ũ∆ → ψ a.e. in QT\Ω̃, so that u is

supported on Ω̃. �

Recalling Lemma 3.5 it follows that, up to a subsequence, ũ∆ → ũ in Lp(QT )

and u∆ → u in Lp(Ω̃), for all p <∞.
We now discuss the convergence of the time derivatives.

Lemma 4.2. The time derivative ũ∆
t of ũ∆ can be written as

(4.1)

ũ∆
t = u∆

t + ψ∆
t =

N−1∑
k=0

χ[tk,tk+1)(t)

[
ukt (t, x)χΩ(tk) + ψt(t, x)χQ0\Ω(tk)(x)

]
+

N−1∑
k=0

δtk(t)
[
ψ(tk, x)− uk(tk−)

]
χΩ(tk−)\Ω(tk+) := B∆ + C∆.

Proof. We compute

u∆
t =

N−1∑
k=0

χ[tk,tk+1)(t)u
k
t (t, x)χΩ(tk)(x)

+
N−1∑
k=1

δtk(t)
[
uk(tk+, x)χΩ(tk+)\Ω(tk−)(x)− uk(tk−, x)χΩ(tk−)\Ω(tk+)(x)

]
and

ψ∆
t =

N−1∑
k=0

χ[tk,tk+1)(t)ψt(t, x)χQ0\Ω(tk)(x)

+
N−1∑
k=1

δtk(t)
[
ψ(tk+, x)χ(Q0\Ω(tk+))\(Q0\Ω(tk−))(x)

−ψ(tk−, x)χ(Q0\Ω(tk−))\(Q0\Ω(tk+))(x)
]
.

As ψ is continuous ψ(tk−, x) = ψ(tk, x) = uk(tk+, x) and the thesis follows. �

Notice that the time derivative ũ∆
t has a singular part which concentrates on

the “shrinking parts” of the boundary of Ω∆.

Lemma 4.3. There exists Λ̃ ∈ D′(QT ) such that, up to extraction of a sub-

sequence, ũ∆
t ⇀ Λ̃ in D′(QT ). Moreover, given any cylinder C := (ta, tb) ×
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K ⊂⊂ Ω̃, there holds that Λ̃|C ∈ Lp
′
(0, T ;W−1,p′(K)) and ũ∆

t |C ⇀ Λ̃|C in

Lp
′
(0, T ;W−1,p′(K)). We also have that

B∆ → ψt strongly inL1(QT\Ω̃)

Finally, there exists ust ∈M(QT ) such that ust � Hd

|∂+Ω̃
and

C∆ ⇀ ust weakly inM(QT ).

Proof. The first statement on Λ̃ follows for instance using Lemma 3.5. The second
statement is a consequence of Lemma 3.9, which provides uniform bounds on

the time derivative over cylinders contained in Ω̃ as in Lemma 3.10. In order

to identify the limit of B∆ in QT\Ω̃ we use Lebesgue’s dominated convergence
theorem together with (2.12) and Lemma 3.4. If we obtain a uniform bound for
C∆ in M(QT ) we will get its weak convergence. Note that∥∥∥∥∥

N−1∑
k=0

δtk(t)
[
ψ(tk, x)− uk(tk−)

]
χΩ(tk−)\Ω(tk+)

∥∥∥∥∥
M(QT )

≤ 2‖ψ‖L∞(QT )

N−1∑
k=0

|Ω(t−k )\Ω(t+k )| <∞

as Ω̃ is Lipschitz and

N−1∑
k=0

|Ω(t−k )\Ω(t+k )| ≤ Hd(∂Ω̃).

Finally, note that C∆ � Hd
∂+Ω̃∆

, where

∂+Ω̃∆ :=
N−1⋃
k=0

{tk} ×
(
Ω(t−k )\Ω(t+k )

)
.

By construction ∂Ω̃∆ → ∂Ω̃ in Hausdorff sense, and the limit of ∂+Ω̃∆ is contained

in ∂+Ω̃. �

Corollary 4.4. Let Σt1,t2 := [t1, t2] × K such that Σt1,t2 ∩ ∂+Ω̃ = ∅. Then
ũ ∈ C(t1, t2;L2(K)).

Proof. By previous considerations, we know that ũt ∈ Lp
′
(t1, t2;W−1,p′(K)). Let

φ ∈ D(Σt1,t2). Then φ ũ ∈ W 1,p
0 (K) for a.e. t1 < t < t2. Using Lemma 3.3

we deduce that φ ũ ∈ C(t1, t2;L2(K)). Being φ and K arbitrary, the thesis
follows. �



C
R
M

P
re
p
ri
nt

S
er
ie
s
nu
m
b
er

12
04

PARABOLIC EQUATIONS IN TIME DEPENDENT DOMAINS 17

Corollary 4.5. There holds that Λ̃|Ω̃ ∈ V∗.

Proof. Let φ ∈ C1
c (Ω̃). Thanks to Lemma 3.9 we have that

|〈Λ̃, φ〉| ≤ ||φ||V
(
c‖ũ‖p−1

Lp(0,T,W 1,p(Q0)) + ‖b‖Lp(0,T,Lp′ (Q0))

)
.

Our claim follows by a duality argument. �

Corollary 4.6. Let us denote the limit of (4.1) as defined by Lemma 4.3 by ũt.
Then we have the following decomposition as measures:

ũt := ψt + urt + ust ,

where

• urt is supported in Ω̃ and urt ∈ V∗,
• ust is supported in ∂+Ω̃ and ust � Hd

|∂+Ω̃
.

4.2. Recovery of the limit equation. Our next aim is identifying the limit
equation. Let us define

A∆(t, x) :=
N−1∑
k=0

χ[tk,tk+1)(t)A(tk, x, u
k,∇uk)χΩ(tk)(x).

Lemma 4.7. There exists a function Ā ∈ Lp
′
(QT )d such that A∆ ⇀ Ā in

Lp
′
(QT )d as N →∞, up to a subsequence. Moreover Ā is supported in Ω̃.

Proof. This follows directly from (2.3) and Lemma 3.6. �

To identify Ā we will require a number of auxiliary results.

Lemma 4.8. Let φ be smooth and such that supp φ ⊂ Ω∆ ∩ Ω̃. Given τ > 0 we
define

ρτ :=
1

τ

∫ t

t−τ
((φ(t)− φ(s))u(s) ds

(we set ρτ := 0 when the previous formula does not make sense), being u the
function defined in Lemma 4.1. Then ρτ ∈ V for any τ > 0 and ρτ → 0 in V as
τ → 0.

Proof. Since supp ρτ ⊂ Ω∆∩ Ω̃ for small τ , we can approximate ρτ in the norm of

V by functions in C1
c (Ω̃) convolving with a mollifying sequence, so that ρτ ∈ V .

Let now K ⊂ IRd be an open set such that K ⊂ Ω∆(t) a.e. t ∈ (ta, tb) for some
values 0 ≤ ta < tb ≤ T . Thanks to [17, Ch. 2, Th. 9], we get that ρτ → 0 in
Lp(ta, tb;W

1,p(K)) as τ → 0. Covering suppφ with a finite collection of cylinders
of the form (ta, tb)×K yields the desired result. �

Lemma 4.9. Let φ be smooth and such that supp φ ⊂ Ω∆ ∩ Ω̃. Then

(4.2) lim sup
N→∞

∫ T

0

∫
Ω∆(t)

A∆ · ∇u∆φ dxdt ≤
∫ T

0

∫
Ω(t)

Ā · ∇uφ dxdt.
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Proof. Let τ > 0 and define

uτ (t) =
1

τ

∫ t

t−τ
u(s) ds.

By multiplying the equation for u∆ by (u∆ − uτ )φ and integrating by parts we
get ∫ T

0

∫
Ω∆(t)

(u∆ − uτ )u∆
t φ dxdt =

∫ T

0

∫
Ω∆(t)

(
u∆ − uτ

)
divA∆φ dxdt

= −
∫ T

0

∫
Ω∆(t)

A∆ · ∇u∆φ dxdt

−
∫ T

0

∫
Ω∆(t)

A∆ · ∇φu∆ dxdt

+

∫ T

0

∫
Ω∆(t)

A∆ · ∇uτφ dxdt

+

∫ T

0

∫
Ω∆(t)

A∆ · ∇φuτ dxdt

:= I + II + III + IV.

Let us elaborate on the left hand side of the previous equality. We compute∫ T

0

∫
Ω∆(t)

u∆u∆
t φ dxdt =

∫ T

0

∫
Ω∆(t)

φ
∂

∂t

[
(u∆(t))2

2

]
dxdt

= −
∫ T

0

∫
Ω∆(t)

(u∆(t))2

2
φt dxdt→ −

∫ T

0

∫
Ω(t)

u2

2
φt dxdt

as N →∞, thanks to Lemma 4.1. Next, we have that

−
∫ T

0

∫
Ω∆(t)

uτu∆
t φ dxdt= −

∫ T

0

∫
Ω∆(t)

u∆
t

φ

τ

∫ t

t−τ
u(s) ds dxdt

= −
∫ T

0

∫
Ω∆(t)

u∆
t

{
(φu)τ+

1

τ

∫ t

t−τ
((φ(t)−φ(s))u(s)ds

}
dxdt

=

∫ T

0

∫
Ω∆(t)

(φu)τt u
∆ dxdt−

∫ T

0

∫
Ω∆(t)

ρτu∆
t dxdt
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=

∫ T

0

∫
Ω∆(t)

φ(t)u(t)− φ(t− τ)u(t− τ)

τ
u∆ dxdt

−
∫ T

0

∫
Ω∆(t)

ρτu∆
t dxdt

=: A+B.

Thanks to our assumptions on φ and (4.1) we have that

B = −
∫ T

0

∫
Ω∆(t)

ρτ
N−1∑
k=0

χ[tk,tk+1)u
k
tχΩ(tk) dxdt

for τ small enough. We then pass to the limit in B by Lebesgue’s dominated
convergence theorem. Indeed, if τ is small enough Lemma 4.3 enables to get
a.e. convergence of the integrand, domination follows as the duality product is
uniformly bounded. To deal with the limit of A as N →∞ we may use Lemma
4.1(4) together with the fact that the incremental ratio is essentially bounded
(after Lemma 3.5). Gathering all the previous and letting N →∞, we find that

−
∫ T

0

∫
Ω∆(t)

uτu∆
t φ dxdt→∫ T

0

∫
Ω(t)

φ(t)u(t)− φ(t− τ)u(t− τ)

τ
u dxdt−

∫
QT

ρτ Λ̃ dxdt,

which is bounded from below by∫ T

0

∫
Ω(t)

φ(t)− φ(t− τ)

τ

u2(t)

2
dxdt−

∫
QT

ρτ Λ̃ dxdt.

Letting τ → 0+ and using Lemma 4.8, we obtain∫ T

0

∫
Ω(t)

φt
u2(t)

2
dxdt,

so that lim infτ→0+ lim infN→∞(I + II + II + IV ) ≥ 0.
We are now ready to compute the limit of I + II + III + IV when N → ∞.

First, we find out that

II → −
∫ T

0

∫
Ω(t)

Ā∇φu dxdt

using Lemmas 4.1(4) and 4.7. We also have

III →
∫ T

0

∫
Ω(t)

Ā∇uτφ dxdt
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as N →∞ (clearly ∇uτ ∈ Lp(QT )d). Note that ∇uτ = (∇u)τ → ∇u in Lploc(Ω̃)d,
as in the proof of Lemma 4.8. Taking limit τ → 0, the above integral converges
to ∫ T

0

∫
Ω(t)

Ā∇uφ dxdt.

Finally, arguing as before we get that

IV →
∫ T

0

∫
Ω(t)

Ā∇φuτ dxdt

as N →∞, which converges to∫ T

0

∫
Ω(t)

Ā∇φu dxdt,

after taking the limit τ → 0. Hence

lim sup
N→∞

∫ T

0

∫
Ω(t)

A∆∇u∆φ dxdt ≤
∫ T

0

∫
Ω(t)

Āφ∇u dxdt,

and the result follows. �

Lemma 4.10. There holds Ā(t, x) = A(t, x, u,∇u) a.e. in Ω̃.

Proof. Let 0 ≤ φ ∈ C1
0(QT ) with suppφ ⊂ Ω∆ ∩ Ω̃, and let g ∈ C1(QT ). Thanks

to the monotonicity assumption (2.5), we have∫ T

0

N−1∑
k=1

∫
Ω(tk)

(A(tk, x, u
∆,∇u∆)− A(tk, x, u

∆,∇g))(∇u∆(t)−∇g)φ dxdt ≥ 0.

From Lemma 4.9 we get

lim sup
N→∞

∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇u∆)∇u∆φ dxdt ≤

∫ T

0

∫
Ω(t)

Ā∇uφ dxdt.

We now show that
(4.3)∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇g)∇u∆φ dxdt→

∫ T

0

∫
Ω(t)

A(t, x, u,∇g)∇uφ dxdt,

as N →∞. Indeed, recalling (2.6) we have∣∣∣∣∣A(t, x, u,∇g)−
N−1∑
k=1

A(tk, x, u
∆,∇g)χ[tk,tk+1)

∣∣∣∣∣ ≤
N−1∑
k=1

χ[tk,tk+1)

(
w(|t− tk|)+C|u(t, x)−u∆(t, x)|

)
|∇g|p−1.
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Note that the right-hand side above converges to zero a.e. in Ω̃ and also in Lp(Ω̃)

for all p < ∞ as N → ∞. On the other hand, ∇u∆ ⇀ ∇u weakly in Lploc(Ω̃)d

thanks to Lemma 4.1, which yields (4.3). In a similar way we show that∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇g)∇g φ dxdt→

∫ T

0

∫
Ω(t)

A(t, x, u,∇g)∇g φ dxdt.

Finally we obtain that∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇u∆)∇g φ dxdt→

∫ T

0

∫
Ω(t)

Ā∇g φ dxdt

thanks to Lemma 4.7. Summing up, we obtain∫ T

0

∫
Ω(t)

(Ā− A(t, x, u,∇g))(∇u(t)−∇g)φ dxdt ≥ 0.

This implies that Ā = A(t, x, u,∇u) for a.e. (t, x) ∈ suppφ, by means of Minty–
Browder’s method (see for instance [19], Chap. 9.1). �

4.3. Recovery of boundary and initial conditions.

Proposition 4.11. The function u defined in Lemma 4.1 is a weak solution of
problem 2.1 in the sense of Definition 2.6. Furthermore, u(t)→ u0 a.e. as t→ 0

Proof. Let φ ∈ C∞0 ((0, T ) × Q0) with suppφ ⊂ Ω∆ ∩ Ω̃. We fix a value of
k ∈ {1, . . . , N − 1} and test the approximating problem in [tk, t) × Ω(tk) with
t < tk+1. That is,∫

Ω(tk)

u∆(t)φ(t) dx+

∫ t

tk

∫
Ω(tk)

A∆ · ∇φ dxds

=

∫
Ω(tk)

u∆(tk)φ(tk) dx+

∫ t

tk

∫
Ω(tk)

u∆(s)φs dxds

for any t ∈ [tk, tk+1). By adding these contributions from 0 to t ∈ (tj, tj+1], j ∈
{1, . . . , N − 1} we get∫

Ω∆(t)

u∆(t)φ(t) dx+

∫ t

0

∫
Ω∆(s)

A∆ · ∇φ dxds

=

∫
Ω(0)

u0φ(0) dx+

∫ t

0

∫
Ω∆(s)

u∆(s)φs dxds(4.4)

+

j∑
k=1

(∫
Ω(tk+)

u∆(tk+)φ(tk) dx−
∫

Ω(tk−)

u∆(tk−)φ(tk) dx

)
.
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Since suppφ ⊂ Ω∆, we also have∫
Ω(tk+)

u∆(tk+)φ(tk) dx−
∫

Ω(tk−)

u∆(tk−)φ(tk) dx

=

∫
Ω(tk+)\Ω(tk−)

ψ(tk)φ(tk) dx−
∫

Ω(tk−)\Ω(tk+)

u∆(tk−)φ(tk) dx = 0.

Thanks to Lemma 4.1(4), u∆ converges strongly to u in L1(suppφ). Hence we
can pass to the limit in (4.4) and obtain∫

Ω(t)

u(t)φ(t) dx+

∫ t

0

∫
Ω(s)

A(t, x, u,∇u) · ∇φ dxds

=

∫
Ω(0)

u0φ(0) dx+

∫ t

0

∫
Ω(s)

u(s)φs dxds

for a.e. 0 < t ≤ T , which holds for any φ ∈ C∞0 ((0, T )×Q0) with suppφ ⊂⊂ Ω̃.
This can be stated as

ut = divA(t, x, u,∇u) in D′(Ω̃).

Furthermore, since ũ ∈ Lp(0, T ;W 1,p(Q0)) and ũ = ψ a.e. QT\Ω̃, we get that
u(t) − ψ(t) ∈ W 1,p

0 (Ω(t)) for almost any t ∈ (0, T ). Hence we also recover the

boundary conditions at ∂lΩ̃ in the limit.
Let us deal next with the initial condition. Note that for t small enough we

have ∫
Ω(t)

u(t)φ(t) dx =

∫
Ω(0)

u0φ(0) dx+ C(φ)t,

here we use that we assume condition 4 on the time slicing (and specifically on
t0 = 0) as specified at the beginning of Section 3. Hence

lim
t→0

∫
Ω(t)

u(t)φ(t) dx =

∫
Ω(0)

u0φ(0) dx.

Now let K ⊂⊂ Ω(0) such that ũ ∈ C(0, t1, L
2(K)) for some t1 > 0 (which exists

as Ω̃ is Lipschitz). Then u(t) converges in L2(K) to some ū0 as t → 0. This
limit ū0 must agree with the distributional limit u0 over K. Hence u(t)→ u0 in
L2
loc(Ω(0)) as t→ 0. In particular we get a.e. convergence to the initial condition.

Note that this works in the same way for any relatively open subset of ∂−1Ω̃.
Finally we justify that u − ψ ∈ V . Once we have shown that the boundary

conditions on ∂lΩ̃ are fulfilled, it is easy to construct a sequence ηn belonging to

C1
c (Ω̃) and satisfying ‖(u − ψ) − ηn‖V → 0 as n → ∞. For instance, we may

consider G ∈ C1(IR) such that |G(t)| ≤ |t|, G(t) = 0 if |t| ≤ 1 and G(t) = t
if |t| ≥ 2. We also consider ρn to be a standard mollifying sequence. Then
ηn = G(nρn ∗ (u− ψ))/n has the desired properties. �
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The argument above also shows that, given a cylinder [t1, t2] ×K ⊂⊂ Ω̃, the
map t 7→ u|K is L2-continuous in [t1, t2]. As a consequence, if we fix t > 0
then u(s) → u(t) as s → t a.e. in Ω(t). In this sense, we can claim that
t 7→ u(t) ∈ C(0, T, L2(Ω(t))).

5. Uniqueness of solutions

Proof of Theorem 2.9. Let ũ1, ũ2 be two solutions of (2.1) with the same initial
datum. Let ε > 0 and qε ≥ 0 be a smooth convex approximation of the absolute
value such that qε(0) = q′ε(0) = 0 and supp q

′′
ε ⊂ [−ε/2, ε/2]. Then we have that

q′ε(ũ1 − ũ2) ∈ Lp(0, T,W 1,p
0 (Q0)).

Let us consider first that ∂+1Ω̃ = ∅, we will remove this restriction later on. We
pick {φn}n ∈ D(QT ) such that φn → q′ε(ũ1 − ũ2) strongly in Lp(0, T,W 1,p

0 (Q0))

and supp φn ⊂ Ω̃. Note that the pairing

〈(ũ1 − ũ2)t, φn〉V∗−V

makes sense and is bounded independently of n. Then we substitute φn in (2.13).
On one hand, when n→∞ we get∫ T

0

∫
Q0

φn(ũ1 − ũ2)t dxdt→
∫ T

0

∫
Q0

q′ε(ũ1 − ũ2)(u1 − u2)t dxdt.

On the other hand, integrating by parts and using (2.3),∫ T

0

∫
Q0

φn(ũ1 − ũ2)t dxdt

= −
∫ T

0

∫
Q0

∇φn (A(t, x, ũ1,∇ũ1)− A(t, x, ũ2,∇ũ2)) dxdt

→ −
∫ T

0

∫
Q0

∇q′ε(ũ1 − ũ2) (A(t, x, ũ1,∇ũ1)− A(t, x, ũ2,∇ũ2)) dxdt as n→∞.

This term can be rewritten as

−
∫ T

0

∫
Q0

q
′′

ε (ũ1 − ũ2)∇(ũ1 − ũ2)[A(t, x, ũ1,∇ũ1)− A(t, x, ũ2,∇ũ2)] dxdt

= −
∫ T

0

∫
Q0

q
′′

ε (ũ1 − ũ2)∇(ũ1 − ũ2)[A(t, x, ũ1,∇ũ1)− A(t, x, ũ1,∇ũ2)] dxdt

−
∫ T

0

∫
Q0

q
′′

ε (ũ1 − ũ2)∇(ũ1 − ũ2)[A(t, x, ũ1,∇ũ2)− A(t, x, ũ2,∇ũ2)] dxdt.
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The first term above is less or equal than zero due to (2.5), hence we can neglect
it. As regards the second term, we use (2.6) to write

−
∫ T

0

∫
Q0

q
′′

ε (ũ1 − ũ2)∇(ũ1 − ũ2)[A(t, x, ũ1,∇ũ2)− A(t, x, ũ2,∇ũ2)] dxdt

≤
∫ T

0

∫
Q0

q
′′

ε (ũ1 − ũ2)|∇(ũ1 − ũ2)|C|∇ũ2|p−1|ũ1 − ũ2| dxdt

≤ C‖q′′ε ‖∞ε
∫ T

0

∫
Q0

|∇(ũ1 − ũ2)||∇ũ2|p−1 dxdt = O(ε).

Now we notice the following decomposition of the boundary measure

(ũ1 − ũ2)st = F (t, x)Hd−1
|∂Ω(t) ⊗ dt+B1,2 with B1,2 ⊥ Hd−1

|∂Ω(t) ⊗ dt.

We also observe that:

(1) B1,2 is concentrated in ∂+1Ω̃.

(2) The set S = {(t, x) ∈ ∂lΩ̃/νt = +1} verifies
(
Hd−1
|∂Ω(t) ⊗ dt

)
(S) = 0.

(3) The density F (t, x) is supported in ∂+Ω̃, which by Assumption 2.8 does

not intersect ∂−1Ω̃.

Since ∂+1Ω̃ = ∅, it follows that∫ T

0

∫
Q0

q′ε(ũ1−ũ2)(ũ1−ũ2)st dxdt =

∫ T

0

(∫
∂Ω(t)

F (t, x)q′ε(ũ1 − ũ2) dHd−1

)
dt = 0,

so that∫ T

0

d

dt

∫
Q0

qε(ũ1 − ũ2) dxdt =

∫ T

0

∫
Q0

q′ε(ũ1 − ũ2)(u1 − u2)t dxdt

+

∫ T

0

∫
Q0

q′ε(ũ1 − ũ2)(ũ1 − ũ2)st ≤ O(ε),

which in turn implies∫
Q0

qε(ũ1 − ũ2)(T ) dx ≤
∫
Q0

qε(ũ1 − ũ2)(0) dx+O(ε)

for any T > 0 and any ε > 0. By letting ε→ 0, we obtain the uniqueness result.

Finally, if ∂+1Ω̃ is not empty, we consider first t1 := inf{t ∈ (0, T )/(t, x) ∈
∂+1Ω̃} and repeat the previous argument on (0, t1). This shows uniqueness over
[0, t1) × Q0. Now we compute the traces of both ũ1 and ũ2 as t ↗ t1 to see
that they coincide. Therefore we can consider any two solutions launched by
ũ1(t1) over (t1, T ) and argue as before that they will agree in [t1, t2), being t2 :=

inf{t ∈ (t1, T )/(t, x) ∈ ∂+1Ω̃}. We repeat this procedure until we reach the
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whole time interval (0, T ) (which we do in a finite number of steps thanks to
Assumption 2.8). �
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