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POINTWISE ESTIMATES FOR 3-MONOTONE
APPROXIMATION

ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

Abstract. We prove that for a 3-monotone function F ∈ C[−1, 1], one can
achieve the pointwise estimates

|F (x)−Ψ(x)| ≤ cω3(F, ρn(x)), x ∈ [−1, 1],

where ρn(x) := 1
n2 +

√
1−x2

n and c is an absolute constant, both with Ψ, a
3-monotone quadratic spline on the nth Chebyshev partition, and with Ψ,
a 3-monotone polynomial of degree ≤ n.

The basis for the construction of these splines and polynomials is the con-
struction of 3-monotone splines, providing appropriate order of pointwise
approximation, half of which nodes are prescribed and the other half are free,
but “controlled”.

1. Introduction and historical background

In recent years there has been much interest and there have been quite a few
achievements in questions concerning the degree of approximation of a contin-
uous function f , on a finite interval, which has a certain shape, by algebraic
polynomials and by piecewise polynomials possessing the same shape. By shape
we mean nonnegativity, monotonicity, convexity and higher order monotonicity
(q-monotonicity), and finitely many changes in one of the above shapes in the
interval (e.g., f may be nondecreasing and nonincreasing, alternately, or f may
be convex and concave, alternately, finitely many times). Estimates on the de-
gree of approximation are either given in the uniform norm, usually involving
various moduli of smoothness of f or its derivatives (provided they exist), or are
pointwise estimates. Much is known about the degree of positive, monotone and
convex approximation and a lot is known on the degree of q-monotone approxi-
mation where q ≥ 4 (mostly negative results), but relatively little is known about
the degree of 3-monotone approximation. The interested reader can find details
in the recent survey [7].
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2 ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

We begin with the basic notions and the known results on 3-monotone approx-
imation.

Let n ∈ N. Throughout the paper xj := cos jπ
n

, j = 0, . . . , n, will denote the
Chebyshev knots, and −1 = xn < xn−1 < · · · < x1 < x0 = 1, the Chebyshev
partition. Set Ij := [xj, xj−1], j = 1, . . . , n, and |Ij| = xj−1 − xj. Finally, for
x ∈ [−1, 1], let

ρn(x) :=
1

n2
+

√
1− x2

n
.

Let Pn denote the space of algebraic polynomials of degree < n. Denote
by ∆3 = ∆3[−1, 1] the set of 3-monotone continuous functions on [−1, 1], i.e.,
f ∈ ∆3, if f ∈ C[−1, 1] and f ′ exists and is convex in (−1, 1). For f ∈ ∆3 we
denote the degree of 3-monotone polynomial approximation by

E(3)
n (f) := inf

Pn∈Pn∩∆3
‖f − Pn‖,

where the norm is the uniform norm on [−1, 1].
It was proved by Beatson [1] (for k = 1), Shvedov [12] (for k = 2), and

Bondarenko [2] (for k = 3), that

(1.1) E(3)
n (f) ≤ cωk(f, 1/n), n ≥ N,

where c is an absolute constant, independent of f and n, and N = k for k = 1, 2
and 3, respectively.

We remind the reader that for g ∈ C[−1, 1] and k ≥ 1,

(1.2) ωk(g, δ) := sup
|h|≤δ
‖∆k

h(g, ·)‖, δ > 0,

where

(1.3) ∆k
h(g, x) :=

{∑k
i=0

(
k
i

)
(−1)k−ig(x+ ih), if [x, x+ kh] ⊆ [−1, 1]

0, otherwise.

Furthermore, Shvedov [13] proved that for k > 4, (1.1) cannot be had with
c = c(k) and N = N(k) (constants which depend on k), and Wu and Zhou [14]
proved that for k > 5, (1.1) cannot be had even with c = c(f) and N = N(f).
Still nothing is known for k = 4.

In the case of 3-monotone piecewise polynomial approximation we shall limit
ourselves to the uniform and the Chebyshev partition of [−1, 1]. The first estimate
is due to Konovalov and Leviatan [5], who proved that given f ∈ ∆3 ∩C2[−1, 1],
there exists a quadratic spline S ∈ ∆3, with n equidistant nodes in [−1, 1] (the
uniform partition), such that

‖f − S‖ ≤ c

n2
ω1(f ′′, 1/n), n ≥ 1,

where c is an absolute constant. This was extended by Prymak [11] who proved
for f ∈ ∆3, the existence of a piecewise quadratic S ∈ ∆3, with n equidistant
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POINTWISE ESTIMATES FOR 3-MONOTONE APPROXIMATION 3

nodes in [−1, 1], such that

‖f − S‖ ≤ cω3(f, 1/n), n ≥ 1.

(In fact Prymak [11] has obtained estimates involving the third modulus of
smoothness of f for the approximation by 3-monotone piecewise quadratics on
an arbitrary partition of [−1, 1].)

In 2005 Leviatan and Prymak [10] proved that most of the expected Jackson
type norm estimates are valid for 3-monotone piecewise polynomial approxima-
tion. Namely, given f ∈ ∆3 ∩ Cr[−1, 1], where either r ≥ 3 or r = 1, 2 and
k = 4− r, there exist piecewise polynomials S1, S2 ∈ ∆3, of degree ≤ k + r − 1,
such that S1 has n equidistant nodes and S2 has nodes on the Chebyshev parti-
tion, and which satisfy

‖f − S1‖ ≤
c(k, r)

nr
ωk(f

(r), 1/n),

and

‖f − S2‖ ≤
c(k, r)

nr
ωϕk (f (r), 1/n),

where ωϕk is the kth Ditzian-Totik (D-T) modulus of smoothness. Namely, for
g ∈ C[−1, 1] and k ≥ 1,

ωϕk (g, δ) := sup
0<h≤δ

‖∆k
hϕ(·)(g, ·)‖, δ > 0,

where ∆k
h is defined in (1.3) and ϕ(x) :=

√
1− x2, x ∈ [−1, 1].

Recently Dzyubenko, Kopotun and Prymak [4] have closed the gap by proving
the only remaining open case, k = 4 and r = 0, namely, there exist splines
S1, S2 ∈ ∆3, of degree ≥ 3, such that S1 has n equidistant nodes and S2 has
nodes on the Chebyshev partition, and which satisfy

‖f − S1‖ ≤ cω4(f, 1/n),

and
‖f − S2‖ ≤ cωϕ4 (f, 1/n).

Since the purpose of this paper is to establish pointwise estimates involving the
third modulus of smoothness for 3-monotone approximation of f ∈ ∆3 by both
3-monotone polynomials and quadratic splines on the Chebyshev partition, it is
worthwhile mentioning the negative result of Bondarenko and Gilewicz [3], who
proved that for r > 4, there exists a constant c = c(r) > 0, such that for each
n ∈ N, there is an f = fn ∈ ∆3 ∩ Cr[−1, 1], ‖f (r)‖ ≤ 1, such that for every
polynomial Pn ∈ Pn ∩∆3, there is an x ∈ [−1, 1] for which

|fn(x)− Pn(x)| > c
√
nρrn(x).

Note that while for monotone and convex approximation by polynomials we
cannot have estimates involving the third and fourth moduli of smoothness (of
the function), respectively, we do have estimates involving higher moduli of the
derivatives, provided they exist. The above mentioned negative result shows us
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4 ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

that we cannot expect similar results for pointwise 3-monotone approximation,
at least not for r > 4.

2. The main results

As mentioned above we have the interval [−1, 1] and the Chebyshev partition
−1 = xn < xn−1 < · · · < x1 < x0 = 1. When we refer to an arbitrary partition of
an arbitrary interval [a, b], we will use the notation a =: τn < τn−1 < · · · < τ1 <
τ0 := b, and we will denote by ∆3[τn, τ0], the 3-monotone continuous functions
on [τn, τ0]. We will also need the notation ∆2(τn, τ0), for the set of all convex
continuous functions on (τn, τ0).

Theorem 1. Let τn < · · · < τ1 < τ0 be given and let F ∈ ∆3[τn, τ0] be a function
with a derivative f := F ′ ∈ ∆2(τn, τ0). Suppose, that s ∈ ∆2(τn, τ0) is a piecewise
polynomial of order k (degree k − 1) with nodes τn, . . . , τ1, τ0, satisfying

s(τi) = f(τi), i = 0, . . . , n,

s′(τi+) ≥ f ′(τi+), i = 1, . . . , n,

f ′(τi−) ≥ s′(τi−), i = 0, . . . , n− 1.

Then, there are at most n additional nodes θn, . . . , θ1, such that τn < θn < τn−1 <
θn−1 < τn−2 < · · · < θ1 < τ0, and a piecewise polynomial S ∈ ∆3[τn, τ0] of order
k + 1 with the nodes τn, θn, τn−1, . . . , θ1, τ0, satisfying

(2.1) ‖F − S‖C[τi,τi−1] ≤ 2

∥∥∥∥∥
∫ (·)

τi

(f(x)− s(x)) dx

∥∥∥∥∥
C[τi,τi−1]

, i = 1, . . . , n,

and such that

(2.2) F (τi) = S(τi), i = 0, . . . , n.

We are now able to state the pointwise estimates for 3-monotone approxima-
tion.

We begin with the splines.

Theorem 2. For each function F ∈ ∆3 and every n ≥ 1, there exists a quadratic
spline S ∈ ∆3 on the Chebyshev partition −1 = xn < · · · < x1 < x0 = 1,
satisfying

(2.3) |F (x)− S(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1],

where c is an absolute constant.

For the polynomials we have,

Theorem 3. For each function F ∈ ∆3 and every n ≥ 2, there exists a polyno-
mial Pn ∈ ∆3 of degree ≤ n, satisfying

(2.4) |F (x)− Pn(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1],

where c is an absolute constant.
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The next section is devoted to the proof of Theorem 1. Then we need quite
a few lemmas, in Sections 4 and 5, before we are able to prove Theorem 2 in
Section 6. Finally, in Section 7, we replace the 3-monotone quadratic spline we
construct in Section 6, by a 3-monotone polynomial.

In the sequel c denotes a generic constant which may differ at each occurrence.

3. Splines with controlled nodes

Theorem 1 is an easy consequence of the following lemma, which is a modifi-
cation of Lemma 1 from [10].

Lemma 1. Let f , g, f1, f2 be continuous functions on [a, b], and such that

f1(x) ≤ f(x), g(x) ≤ f2(x), x ∈ [a, b].

Then, there are coefficients α, α1, α2 ≥ 0, with α + α1 + α2 = 1, such that

h(x) := αg(x) + α1f1(x) + α2f2(x), x ∈ [a, b]

satisfies ∫ b

a

f(x) dx =

∫ b

a

h(x) dx,∥∥∥∥∥
∫ (·)

a

(h(x)− f(x)) dx

∥∥∥∥∥
C[a,b]

≤ 2

∥∥∥∥∥
∫ (·)

a

(g(x)− f(x)) dx

∥∥∥∥∥
C[a,b]

.

Proof. If
∫ b
a
f(x) dx =

∫ b
a
g(x) dx, then take h(x) := g(x), x ∈ [a, b], namely,

α = 1 and α1 = α2 = 0, and there is nothing to prove. Otherwise, if
∫ b
a
f(x) dx >∫ b

a
g(x) dx, then we apply the arguments of proof of Lemma 1 in [10] with g

replacing q and f2 replacing l. The resulting function is the convex combination
of g and f2, namely, α1 := 0, and α, α2 are defined by the corresponding formula

from [10]. On the other hand, if
∫ b
a
f(x) dx <

∫ b
a
g(x) dx, then we apply similar

arguments, which we detail here and which will serve also as a reminder of the

proof in [10]. Thus, assume that
∫ b
a
f(x) dx <

∫ b
a
g(x) dx, and denote∫ b

a

(
g(x)− f(x)

)
dx =: A > 0,

and ∫ b

a

(
f(x)− f1(x)

)
dx =: B ≥ 0.

Set

h(x) :=
Af1(x) +Bg(x)

A+B
.
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6 ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

Now,∣∣∣∣∫ x

a

(
h(t)− f(t)

)
dt

∣∣∣∣ ≤ A

A+B

∣∣∣∣∫ x

a

(
f1(t)−f(t)

)
dt

∣∣∣∣+ B

A+B

∣∣∣∣∫ x

a

(
g(t)−f(t)

)
dt

∣∣∣∣
≤ AB

A+B
+

B

A+B

∥∥∥∥∫ x

a

(
g(t)− f(t)

)
dt

∥∥∥∥
C[a,b]

≤ 2B

A+B

∥∥∥∥∫ x

a

(
g(t)− f(t)

)
dt

∥∥∥∥
C[a,b]

≤ 2

∥∥∥∥∫ x

a

(
g(t)− f(t)

)
dt

∥∥∥∥
C[a,b]

.

Finally,∫ b

a

h(x) dx =
A

A+B

∫ b

a

f1(x) dx+
B

A+B

∫ b

a

g(x) dx

=
A

A+B
(B +

∫ b

a

f1(x) dx) +
B

A+B
(−A+

∫ b

a

g(x) dx)

=

∫ b

a

f(x) dx.

This concludes the proof. �

Proof of Theorem 1. Let i = 1, . . . , n be fixed. Put

f1(x) := max{f ′(τi+)(x−τi)+f(τi), f
′(τi−1−)(x−τi−1)+f(τi−1)}, x ∈ [τi, τi−1],

and

f2(x) :=
f(τi)(x− τi−1)

τi − τi−1

+
f(τi−1)(x− τi)

τi−1 − τi
, x ∈ [τi, τi−1].

Then f2 is a linear function, and f1 is a piecewise-linear function with one node
θi ∈ (τi, τi−1). Moreover, the construction of f1 and f2 and well known properties

of convex functions yield that if f̃ is a convex function on [τi, τi−1], satisfying

f̃(τi)=f(τi), f̃(τi−1)=f(τi−1), f̃ ′(τi+)≥f ′(τi+) and f̃ ′(τi−1−)≤f ′(τi−1−),

then

f1(x) ≤ f̃(x) ≤ f2(x), x ∈ [τi, τi−1].

Hence,

f1(x) ≤ f(x) ≤ f2(x), x ∈ [τi, τi−1],

and

f1(x) ≤ s(x) ≤ f2(x), x ∈ [τi, τi−1].

By virtue of Lemma 1, we have a function

hi(x) := αs(x) + α1f1(x) + α2f2(x), x ∈ [τi, τi−1],
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POINTWISE ESTIMATES FOR 3-MONOTONE APPROXIMATION 7

such that α, α1, α2 ≥ 0, and α + α1 + α2 = 1, which is a convex piecewise
polynomial of order k with at most one node θi ∈ (τi, τi−1), and satisfies

(3.1)

∫ τi−1

τi

hi(x) dx =

∫ τi−1

τi

f(x) dx,

and

(3.2)

∥∥∥∥∥
∫ (·)

τi

(hi(x)− f(x)) dx

∥∥∥∥∥
C[τi,τi−1]

≤ 2

∥∥∥∥∥
∫ (·)

τi

(s(x)− f(x)) dx

∥∥∥∥∥
C[τi,τi−1]

.

Note, that the construction of hi gives

hi(τi) = hi+1(τi), i = 1, . . . , n− 1,

and
h′i+1(τi) ≤ f ′(τi−) ≤ f ′(τi+) ≤ h′i(τi), i = 1, . . . , n− 1,

so that the function

h(x) := hi(x), x ∈ [τi, τi−1], i = 1, . . . , n,

is a piecewise polynomial of order k with the nodes τn, . . . , τ0 and, perhaps, some
additional nodes (with at most one node θi ∈ (τi, τi−1), i = 1, . . . , n), moreover
h ∈ ∆2[τn, τ0].

Finally let

S(x) :=

∫ x

τn

h(t) dt+ F (τn), x ∈ [τn, τ0].

Then, (2.2) readily follows by (3.1), whence, in turn, (2.1) follows by virtue of
(3.2). This completes the proof. �

4. A fundamental lemma

We will need the following relations between the lengths of the various intervals
Ij, and between these lengths and ρn(x), x ∈ Ij. The following relations are well
known (see, e.g., [8, (1.2) and (1.3)]).

(4.1) ρn(x) < |Ij| < 5ρn(x), xj ≤ x ≤ xj−1, j = 1, . . . , n,

so that, in particular

(4.2) ρn(xj−1) < 5ρn(xj), j = 1, . . . , n.

Also

(4.3) |Ij±1| < 3|Ij|, j = 1, . . . , n,

where we put |In+1| = |I0| = 0, and it is easy to see that for j > i,

(4.4) max{|Ij|, |Ii|}
j − i
3π
≤ xi − xj.

Finally, for all x ∈ [−1, 1] and every 1 ≤ j ≤ n− 1

(4.5) ρ2
n(x) ≤ cρn(xj)(ρn(xj) + |x− xj|)
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8 ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

and, symmetrically,

(4.6) ρ2
n(xj) ≤ cρn(x)(ρn(x) + |x− xj|),

where c is an absolute constant.

Lemma 2. Given numbers αj ∈ [0, 1], j = 1, . . . ,M . If

(4.7)
M∑
j=1

αj ≥ S,

then

(4.8)
M∑
j=1

jαj ≥
S∑
j=1

j.

Proof. Since αj ≤ 1, j = 1, . . . ,M , it follows from (4.7) that for eachK = 1, . . . , S
that

M∑
j=K

αj ≥ S −K + 1.

Thus, adding these inequalities for K = 1, . . . , S, we obtain

α1 + 2α2 + · · ·+ SαS + SαS+1 + . . .+ SαM ≥
S∑

K=1

(S −K + 1) =
S∑
j=1

j,

which in turn implies (4.8). �

The next lemma is a fundamental lemma in our construction.
We require the notation

x0
+ =

{
1, x ≥ 0,

0, x < 0.

Lemma 3. Let F ∈ C[−1, 1], and let the integers D, s and k, such that n/2 ≤
s < k ≤ n, be given. Assume that

g(x) =
k∑
j=s

αj(x− xj)0
+,

is a step function satisfying

0 ≤ αj ≤ C ω3(F, ρn(xj)), j = s, . . . , k,(4.9)

g(xs) = g(xs)− g(xk−) > 200CDω3(F, ρn(xs)),(4.10)

g(xl) = g(xl)− g(xk−) ≤ 200CDω3(F, ρn(xl)), l = s+ 1, . . . , k,(4.11)



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

10
63

POINTWISE ESTIMATES FOR 3-MONOTONE APPROXIMATION 9

for some constant C > 0. Then there exists a nondecreasing polygonal line

S(x) =
k∑
j=s

βj
|Ij|

(x− xj)+,

such that

|βj| ≤
αj
D
,(4.12)

S(x) = g(x), x ∈ [−1, 1] \ [xk, xs],(4.13)

|g(x)− S(x)| ≤ 402CDω3(F, ρn(x)), x ∈ [xk, xs].(4.14)

Remark 1. Note that in view of (4.9) and (4.10), F /∈ P3.

Proof. Note that xs ≤ 0, so that ρn(xs) > ρn(xl), l = s+ 1, . . . , k, and let u,
s ≤ u ≤ k, be the largest integer such that

(4.15) ω3(F, ρn(xu)) ≥
1

2
ω3(F, ρn(xs)).

Then, by (4.11),

k∑
j=u+1

αj ≤ 200CDω3(F, ρn(xu+1)) ≤ 100CDω3(F, ρn(xs)).

Hence,
u∑
j=s

αj ≥ 100CDω3(F, ρn(xs)).

Denote by v, s ≤ v ≤ u, the largest integer such that
u∑

j=v+1

αj ≥ 65CDω3(F, ρn(xs)).

Put

p :=
u∑

j=v+1

αj
|Ij|

, q :=
v∑
j=s

αj
|Ij|

, Λ :=
p

q
.

Note that q 6= 0, since by the definition of v we have

v+1∑
j=s

> 35CDω3(F, ρn(xs)),

and by (4.9), αv+1 ≤ Cω3(F, ρn(xv+1)) ≤ Cω3(F, ρn(xs)), whence
∑v

j=s αj > 0.
If Λ ≤ 1, then we put

β̂j :=

{
−Λαj

D
, j = s, . . . , v,

αj

D
, j = v + 1, . . . , u.
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10 ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

Otherwise, Λ > 1, and we set

β̂j :=

{
−αj

D
, j = s, . . . , v,

αj

ΛD
, j = v + 1, . . . , u.

Denote

(4.16) βj := β̂j
g(xs)∑u

i=s
β̂i

|Ii|(xs − xi)
, j = s, . . . , u,

and, finally, put βj := β̂j := 0, for j = u+ 1, . . . , k. We will show that the
polygonal line

S(x) =
k∑
j=s

βj
|Ij|

(x− xj)+

is the required one. To this end, evidently,

k∑
j=t

β̂j
|Ij|
≥ 0, t = s+ 1, . . . , k,(4.17)

k∑
j=s

β̂j
|Ij|

= 0,(4.18)

and

(4.19) |β̂j| ≤
αj
D
.

We will prove that

(4.20)
k∑
j=s

β̂j
|Ij|

(xs − xj) > g(xs) =
k∑
j=s

αj.

Indeed, for Λ ≤ 1, by (4.18), (4.4), and Lemma 2, we have

k∑
j=s

β̂j
|Ij|

(xs − xj) =
u∑
j=s

β̂j
|Ij|

(xv − xj) ≥
1

D

u∑
j=v+1

αj
|Ij|

(xv − xj)

≥ 1

3πD

u∑
j=v+1

αj(j − v) =
1

3πD

u−v∑
j=1

jα∗j

=
C ω3(F, ρn(xs))

3πD

u−v∑
j=1

j
α∗j

C ω3(F, ρn(xs))
≥ C ω3(F, ρn(xs))

3πD

65D∑
j=1

j

=
65D(65D + 1)C ω3(F, ρn(xs))

6πD
> (200D + 1)C ω3(F, ρn(xs)),
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where α∗j := αj+v, and we used the facts that 0 ≤ α∗j ≤ C ω3(F, ρn(xs)), and

u−v∑
j=1

α∗j =
u∑

j=v+1

αj ≥ 65DC ω3(F, ρn(xs)).

Similarly, if Λ > 1, then we have

k∑
j=s

β̂j
|Ij|

(xs − xj) =
u∑
j=s

β̂j
|Ij|

(xv − xj)

≥ 1

D

v∑
j=s

αj
|Ij|

(xj − xv)

> (200D + 1)C ω3(F, ρn(xs)).

On the other hand, the inequalities (4.9) and (4.11) imply

(4.21) g(xs) ≤ (200D + 1)C ω3(F, ρn(xs)).

Hence, (4.20) is proven. Now, (4.12) follows by (4.19) and (4.20), and the defi-
nition of βj, (4.16). Also, (4.16) and (4.17) imply that S is non-decreasing, that
S(xs) = g(xs), and by virtue of (4.18), we get (4.13). Further, since S(x) = 0,
x ≤ xu, (4.11) and (4.21) imply (4.14) for x ∈ [xk, xu], where we note that by
(4.11), if xl ≤ x < xl−1, l = u, . . . , k, then

g(x) = g(xl) ≤ 200CDω3(F, ρn(xl)) ≤ 200CDω3(F, ρn(x)).

Finally, for x ∈ [xu, xs]

|S(x)− g(x)| ≤ g(xs)− S(xu) = g(xs) ≤ (200D + 1)C ω3(F, ρn(xs)),

by (4.21). Now (4.15) implies (4.14) for x ∈ [xu, xs]. This completes the
proof. �

Remark 2. Lemma 3 is stated for the interval [−1, 0]. The situation is completely
symmetric for the interval [0, 1] (one only has to take a mirror image of the
conditions, this time with 1 ≤ k < s ≤ n/2). We leave the statement and proof
to the reader. (See also Remark 3 below.)

Lemma 3 is the main tool we use in the proof of Lemma 7 below. However,
in that proof we may encounter a case where the conditions of Lemma 3 are not
satisfied and we need to apply another tool. This is the purpose of the following
observation.

Lemma 4. Let dn/2e ≤ k < n, and assume that the nonnegative numbers αj are
such that

(4.22)
k∑
j=s

αj ≤ cω3(F, ρn(xs)), s = dn/2e, . . . , k.
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12 ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

Then for xl ≤ x < xl−1, l = dn/2e, . . . , k − 1, and for −1 ≤ x < xk−1, for l = k,
we have

(4.23)
l∑

j=dn/2e

αj

( 1 + x

1 + xj

)2

≤ c̃ω3(F, ρn(x)).

Proof. Denote m := dn/2e and let either xl ≤ x < xl−1, l = dn/2e, . . . , k − 1,
or −1 ≤ x < xk−1, for l = k. We rewrite the left hand side of (4.23) using
summation by parts.

l∑
j=m

αj

( 1+x

1+xj

)2

=
l∑

j=m

αj

( 1+x

1+xm

)2

+
l∑

s=m+1

l∑
j=s

αj(1+x)2

[
1

(1+xs)2
− 1

(1+xs−1)2

]
.

By virtue of (4.22) we obtain,

l∑
j=m

αj

( 1+x

1+xj

)2

≤ cω3(F, ρn(xm))
( 1+x

1+xm

)2

+ c
l∑

s=m+1

ω3(F, ρn(xs))

[( 1+x

1+xs

)2

−
( 1+x

1+xs−1

)2
]

=: I1 + I2.

Now, for m ≤ s ≤ l, it follows that

(4.24)
ρ3
n(xs)

ρ3
n(x)

( 1 + x

1 + xs

)3/2

≤ 64,

where we recall that x < xl−1.
Observe that

1

(1 + xs)2
− 1

(1 + xs−1)2
≤ c

|Is|
(1 + xs)3

,

so that by (4.24),

I2 ≤ c
ω3(F, ρn(x))

ρ3
n(x)

(1 + x)2

l∑
s=m+1

ρ3
n(xs)

|Is|
(1 + xs)3

≤ cω3(F, ρn(x))
l∑

s=m+1

|Is|
(1 + xs)3/2

(4.25)

≤ cω3(F, ρn(x))(1 + x)1/2

∫ xm

xl

(1 + t)−3/2 dt

≤ cω3(F, ρn(x))
( 1 + x

1 + xl

)1/2

.

Also,

(4.26) I1 ≤ c
ρ3
n(xm)

ρ3
n(x)

ω3(F, ρn(x))
( 1 + x

1 + xm

)2

≤ cω3(F, ρn(x)).
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Combining (4.25) and (4.26), the proof is complete. �

Remark 3. Lemma 4 is stated for the interval [−1, 0], but we need it also for
the interval [0, 1]. However, unlike Lemma 3 which was translated, practically
verbatim, to [0, 1], a similar translation of Lemma 4 to [0, 1] is not helpful for
the estimates on the approximation by the splines with nodes at the Chebyshev
knots, due to the non symmetry of the truncated powers. Rather we will have to
modify it. One should note that it is also possible to apply this modification in
order to translate Lemma 3 to the interval [0, 1]. (See details in the last part of
the proof of Lemma 7 below.) Nevertheless, we need the translation of Lemma 4
to [0, 1] for the estimates on the polynomial approximation, but we defer the
statement for further preparations (see Lemma 11).

5. Auxiliary lemmas

We begin with a lemma.

Lemma 5. Let θ ∈ (xj, xj−1), N + 1 ≤ j ≤ n−N . For any γ, |γ| < 1

3
|Ij|, there

are nonnegative numbers ηj, µj, νj such that
(5.1)
ηj(x−xj+N)2 +µj(x−xj+1)2 +νj(x−xj−2)2 = (x−θ)2 +h2

j +γ(x−xj−2), x ∈ R,
holds with N ≥ 1900 and hj = 7|Ij|.

Proof. Comparing the coefficients of the various powers of x on both sides of
the equation, we observe that (5.1) is equivalent to the system of three linear
equations 

ηj + µj + νj = 1,

ηjxj+N + µjxj+1 + νjxj−2 = θ − γ

2
,

ηjx
2
j+N + µjx

2
j+1 + νjx

2
j−2 = θ2 + h2

j − γxj−2.

The solution to the latter is given by

ηj =
∆η,j

∆j

, µj =
∆µ,j

∆j

, νj =
∆ν,j

∆j

,

where by straightforward computations we have,

∆ := (xj−2 − xj+1)(xj−2 − xj+N)(xj+1 − xj+N) > 0,

∆η,j := (xj−2 − xj+1)
(

(θ − xj+1)2 + h2
j − (xj−2 − xj+1)

(
θ +

γ

2
− xj+1

))
,

∆µ,j := (xj−2 − xj+N)
(

(xj−2 − xj+N)
(γ

2
+ xj−2 − θ

)
− (θ − xj−2)2 − h2

j

)
,

∆ν,j := (xj+1 − xj+N)
(

(θ − xj+1)2 + h2
j − γ(xj−2 − xj+1)

+ (xj+1 − xj+N)
(
θ − γ

2
− xj+1

))
.
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14 ANDRIY BONDARENKO, DANY LEVIATAN, ANDRIY PRYMAK

Now,

xj−2 − xj+1 ≤ 7|Ij|,
and

xj+1 +
|Ij|
2
≤ θ ± γ

2
≤ xj−2 −

|Ij|
2
.

Hence, we obtain

h2
j − (xj−2 − xj+1)

(
θ +

γ

2
− xj+1

)
≥ (7|Ij|)2 − (xj−2 − xj+1)2

≥ (7|Ij|)2 − (7|Ij|)2 = 0,

and as all other terms are nonnegative, we conclude that ∆η,j > 0.
Even simpler is the inequality

h2
j − γ(xj−2 − xj+1) > 49|Ij|2 −

1

3
|Ij| · 7|Ij| > 0,

so that, with all other terms being nonnegative, we conclude that ∆ν,j > 0.
Finally by virtue of (4.3) and (4.4), we obtain

(xj+1 − xj+N)
(γ

2
+ xj−2 − θ

)
>
N − 1

π
|Ij+1|

|Ij|
2
≥ N − 1

6π
|Ij|2.

Hence,

(xj+1 − xj+N)
(γ

2
+ xj−2 − θ

)
− (θ − xj+1)2 − h2

j

>
N − 1

6π
|Ij|2 − 49|Ij|2 − 49|Ij|2 =

(N − 1

6π
− 98

)
|Ij|2 > 0,

since we recall that N ≥ 1900. Thus, ∆µ,j > 0, and the proof is complete. �

We also need the following lemma.

Lemma 6. For any θ ∈ (xj, xj−1), 1 ≤ j ≤ n − 1, there exists a piecewise
quadratic spline Sθ ∈ ∆3 with the Chebyshev knots, such that

Sθ(x) = (x− θ)2, x ∈ (xj−1, 1],(5.2)

|Sθ(x)| ≤ c
( 1 + x

1 + xj

)2

|Ij|2, x ∈ [−1, xj),(5.3)

|Sθ(x)− (x− θ)2
+| ≤ c|Ij|2, x ∈ [xj, xj−1].(5.4)

Proof. For j = 1 we take Sθ(x) := (x− x1)2
+ and observe that we have a stronger

inequality (5.3), namely, Sθ(x) = 0, x ∈ [−1, x1).
Otherwise, 1 < j < n, so take

Sθ(x) := −η(1 + x)2 + µ(x− xj)2
+ + ν(x− xj−1)2

+, x ∈ [−1, 1],
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where

η :=
(xj−1 − θ)(θ − xj)
(xj−1 + 1)(xj + 1)

,

µ :=
(xj−1 − θ)(θ + 1)

(xj + 1)(xj−1 − xj)
,

ν :=
(θ − xj)(θ + 1)

(xj−1 + 1)(xj−1 − xj)
.

By definition, µ, ν > 0, so that Sθ ∈ ∆3. Also, straightforward computations yield
(5.2). Thus, it is left to show (5.3) and (5.4). To this end, first let x ∈ [−1, xj].
Then

|Sθ(x)| = η(1 + x)2 =
(xj−1 − θ)(θ − xj)
(xj−1 + 1)(xj + 1)

(1 + x)2

≤
( 1 + x

1 + xj

)2

(xj−1 − θ)(θ − xj)

≤ 1

4

( 1 + x

1 + xj

)2

|Ij|2,

which proves (5.3). Finally, for x ∈ (xj, xj−1], we have

|Sθ(x)| = η(1 + x)2 + µ(x− xj)2

≤ 1

4

( 1 + x

1 + xj

)2

|Ij|2 +
θ + 1

xj + 1
|Ij|2

≤ c|Ij|2,

where for the last inequality we applied (4.4) to conclude that

max

{
1 + x

1 + xj
,

1 + θ

1 + xj

}
≤ 1 + xj−1

1 + xj

= 1 +
xj−1 − xj
xj − xn

≤ 1 + 3π.

This combined with the fact that

(x− θ)2
+ ≤ |Ij|2, x ∈ (xj, xj−1],

completes the proof of (5.4) and, thus, of the lemma. �

We apply the above lemmas to remove the unwanted θj’s.

Lemma 7. Suppose θj ∈ (xj, xj−1), j = N + 1, . . . , n−N − 1, and

σ(x) =
n−N−1∑
j=N+1

qj(x− θj)2
+,
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and assume the coefficients are such that for some F ∈ C[−1, 1],

0 ≤ qj|Ij|2 ≤ cω3(F, ρn(xj)), j = N + 1, . . . , n−N − 1.

Then there is a piecewise quadratic spline σ1 ∈ ∆3 with nodes at the Chebyshev
knots, satisfying

|σ(x)− σ1(x)| ≤ c̃ω3(F, ρn(x)), x ∈ [−1, 1].

Proof. We first point out that by virtue of Lemma 5, for each j, N + 1 ≤ j ≤
n−N − 1,

(x− θj)2
+−
(
ηj(x− xj+N)2

+ + µj(x− xj+1)2
+ + νj(x− xj−2)2

+

)
− h2

j(x− xj−2)0
+ − γj(x− xj−2)+(5.5)

=

{
0, if x > xj−2, or x ≤ xj+N ,

Rj(x), for xj+N < x ≤ xj−2,

where γj is to be prescribed, and

(5.6) |Rj(x)| ≤ c|Ij|2, xj+N < x ≤ xj−2.

We split the summation in σ into two parts, the sum of the terms with dn/2e+2 ≤
j ≤ n − N − 1, and the rest (which is treated similarly, see the last part of the
proof).
Consider the sum

n−N−1∑
j=dn/2e+2

qjh
2
j(x− xj−2)0

+ =
n−N−3∑
j=dn/2e

qj+2h
2
j+2(x− xj)0

+.

Our strategy is to apply Lemma 3. Let D be taken so that

(5.7)
h2
j

D|Ij−2|
<

1

3
|Ij|, j = dn/2e, . . . , n−N − 3.

We begin by setting k1 = n−N−3, and we let s1 < k1 be so that s1 ≥ dn/2e, and
the conditions of Lemma 3 are satisfied for s = s1, k = k1, with αj := h2

j+2qj+2.
Note that αj ≤ cω3(F, ρn(xj)), dn/2e ≤ j ≤ n − N − 3, for some constant
c. Clearly if s1 = dn/2e, we are done with the construction. Otherwise, set
k2 := s1 − 1 > dn/2e and let s2, dn/2e ≤ s2 < k2, be chosen similarly, with the
conditions of Lemma 3 to be satisfied. We proceed like that and let dn/2e ≤
sm < km be the last pair to be chosen in this manner. We apply Lemma 3 and
Lemma 5, for each pair (si, ki), obtaining a piecewise linear spline

S(x) =
n−N−3∑
j=sm

βj
|Ij|

(x− xj)+ =
n−N−1∑
j=sm+2

βj−2

|Ij−2|
(x− xj−2)+.
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Observe that we may choose in (5.5),

γj = − βj−2

qj|Ij−2|
,

since the only requirement in Lemma 5 is that |γj| < 1
3
|Ij|, that is guaranteed by

(5.7). Hence,

n−N−1∑
j=sm+2

(
βj−2

|Ij−2|
(x− xj−2)+ + qjγj(x− xj−2)+

)
= 0,

and in view of the above construction,∣∣∣∣∣
n−N−1∑
j=sm+2

qjh
2
j(x− xj−2)0

+ +
n−N−1∑
j=sm+2

qjγj(x− xj−2)+

∣∣∣∣∣
=

∣∣∣∣∣
n−N−1∑
j=sm+2

qjh
2
j(x− xj−2)0

+ −
n−N−1∑
j=sm+2

βj−2

|Ij−2|
(x− xj−2)+

∣∣∣∣∣(5.8)

≤ cω3(F, ρn(x)), x ∈ [−1, 1].

Also, given xi ≤ x < xi−1, N < i < n−N , we get by (6.5) and (5.6),

n−N−1∑
j=sm+2

qj|Rj(x)| ≤
i+1∑

j=i−N

qj|Rj(x)|

≤ c
i+1∑

j=i−N

ω(F, ρn(xj)) ≤ cω3(F, ρn(x)),(5.9)

where for the last inequality we have applied (4.1) and (4.2).
Thus, letting

(5.10) S1(x) :=
n−N−1∑
j=sm+2

qj
(
ηj(x− xj+N)2

+ + µj(x− xj+1)2
+ + νj(x− xj−2)2

+

)
,

it follows by (5.8) and (5.9) that

(5.11)
∣∣∣n−N−1∑
j=sm+2

qj(x− θj)2
+ − S1(x)

∣∣∣ ≤ cω3(F, ρn(x)), x ∈ [−1, 1].

If it so happens that sm = dn/2e, then we are done. Otherwise, our process
stops, that is, we have an index k (which may even be k = k1), and we cannot
find s < k so that the conditions of Lemma 3 are satisfied. Namely, we have the
inequalities

k+2∑
j=s

qj|Ij|2 ≤ CDω3(F, ρn(xs)), s = dn/2e+ 2, . . . , k + 2.
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Then we go back to the original sum
∑k+2

j=dn/2e+2 qj(x− θj)2
+, and approximate it

using Lemma 6.
To this end, note that by virtue of Lemma 6, for xl ≤ x < xl−1, dn/2e ≤ l ≤

k + 3, and for −1 ≤ x < xk+1, l = k + 2,

k+2∑
j=dn/2e+2

qj
∣∣(x− θj)2

+ − Sθj
(x)
∣∣ ≤ l∑

j=dn/2e+2

qj|Ij|2
( 1 + x

1 + xj

)2

≤ CDω3(F, ρn(x)),(5.12)

where for the last inequality we have applied Lemma 4.
Denoting

S2(x) :=
k+2∑

j=dn/2e+2

qjSθj
(x),

and setting
S := S1 + S2,

we conclude that S ∈ ∆3, and it follows by (5.11) and (5.12) that,

(5.13)
∣∣∣ n−N−1∑
j=dn/2e+2

qj(x− θj)2
+ − S(x)

∣∣∣ ≤ CDω3(F, ρn(x)), x ∈ [−1, 1].

As mentioned at the beginning of the proof, we construct a similar 3-monotone
piecewise quadratic spline with nodes at the Chebyshev knots, approximating

dn/2e+1∑
j=N+1

qj(x− θj)2
+.

First we apply the construction of Lemma 3, see Remark 2. However, again we
may have an index k ≥ N + 1 such that

s∑
j=k+2

qj|Ij|2 ≤ CDω3(F, ρn(xs)), s = k + 2, . . . , dn/2e+ 1.

Thus, we need to apply an analogue of Lemma 4.
To this end, we observe that

(5.14) (x− t)2
+ = (x− t)2 − (−x+ t)2

+.

Hence, substituting y := −x and τj := −θj,
dn/2e+1∑
j=k+2

qj(x− θj)2
+ =

dn/2e+1∑
j=k+2

qj(x− θj)2 −
dn/2e+1∑
j=k+2

qj(−x+ θj)
2
+

=: P (x)−
dn/2e+1∑
j=k+2

qj(y − τj)2
+.
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Note that P (x) is a quadratic polynomial. Denote yj := −xj. Then τj ∈
(yj−1, yj) ⊂ [−1, 0], except for ydn/2e+1 and, perhaps, ydn/2e (the latter, only if
n is odd), but this requires no significant modification in the proof of Lemma 4.

Thus, by Lemmas 4 and 6, there exists a quadratic spline Ŝ(y) ∈ ∆3 such that∣∣∣dn/2e+1∑
j=k+2

qj(y − τj))2
+ − Ŝ(y)

∣∣∣ ≤ CDω3(F, ρn(y)), y ∈ [−1, 1],

which in turn implies∣∣dn/2e+1∑
j=k+2

qj(x− θj)2
+ − (P (x)− Ŝ(−x))

∣∣ ≤ CDω3(F, ρn(x)), x ∈ [−1, 1].

Finally, we observe that P (x)− Ŝ(−x) ∈ ∆3. This completes the proof. �

6. Quadratic spline with nodes at the Chebyshev knots

We are ready to prove Theorem 2.

Proof of Theorem 2. Given F ∈ ∆3, the function f := F ′ ∈ C(−1, 1), is convex.
Let s(x) denote the piecewise linear interpolant of f on the Chebyshev knots
xn−1 < · · · < x1. Then, it readily follows that s is convex and the requirements
of Theorem 1 are satisfied in [xn−1, x1]. It was proved in [11, Lemma 3] that∫ xi−1

xi

|f(t)− s(t)| dt ≤ cω3(F, (xi−2 − xi+1)/3; [xi+1, xi−2]), 2 ≤ i ≤ n− 1.

Hence, by Theorem 1 (2.1), we obtain a piecewise quadratic S ∈ ∆3[xn−1, x1]
satisfying

(6.1) |F (x)− S(x)| ≤ c ω3(F, ρn(x)), x ∈ [xn−1, x1],

where we used (4.1), (4.2) and (4.3).
However, note that S may have nodes not only at the Chebyshev knots but,

perhaps, also at some θj ∈ (xj, xj−1), 2 ≤ j ≤ n− 1.
We extend the definition of S to the end intervals by

S|[x1,1]
:= F ′′(x1−)(· − x1)2 + F ′(x1)(· − x1) + F (x1),

and

S|[−1,xn−1]
:= F ′′(xn−1+)(· − xn−1)2 + F ′(xn−1)(· − xn−1) + F (xn−1).

Again, by [11, Lemma 3]∫ 1

x1

|f(t)− S ′(t)| dt ≤ cω3(F, (1− x3)/3; [x3, 1]),∫ xn−1

−1

|f(t)− S ′(t)| dt ≤ cω3(F, (xn−3 + 1)/3; [−1, xn−3]),
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so that, combined with (6.1), we have

(6.2) |F (x)− S(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1].

Clearly, we may write

S(x) =: P ∗(x) +
n−1∑
i=1

αi(x− xi)2
+ +

n−1∑
i=2

qi(x− θi)2
+, x ∈ [−1, 1],

where P ∗ is a polynomial of degree ≤ 2, and all αi ≥ 0, 1 ≤ i ≤ n− 1 and qi ≥ 0,
2 ≤ i ≤ n− 1.
We proceed to remove the terms involving θj, N + 1 ≤ j ≤ n−N − 1. This we
do by virtue of Lemma 7, by showing that qj|Ij|2 ≤ c ω3(F, ρn(xj)), N + 1 ≤ j ≤
n−N − 1. To this end, observe that by (1.3),

Bh(x) := ∆3
h((·)2

+, x) ≥ 0, x ∈ [−2, 2],

and
∆3
h((·)2

+, x) ≥ h2, for − 2h ≤ x ≤ −h.
For h = 1

7
|Ij|, N + 2 ≤ j ≤ n − N − 1, let x − θj ∈ [−2h,−h]. Then it follows

that

∆3
h(S, x) =

n−1∑
i=1

αiBh(x− xi) +
n−1∑
i=2

qiBh(x− θi) ≥ qjBh(x− θj) ≥
qj
49
|Ij|2.

On the other hand, by (1.2), for all x such that x− θj ∈ [−2h,−h],

∆3
h(S, x) ≤ ω3(S, (xj−2 − xj+1); [xj+1, xj−2]) ≤ c ω3(F, ρn(xj)),

where we applied (6.2), and (4.1) and (4.3).
Hence, we conclude that

qj|Ij|2 ≤ c ω3(F, ρn(xj)), j = N + 1, . . . , n−N − 1.

Therefore, by virtue of Lemma 7, we have a 3-monotone piecewise quadratic S̄
with nodes at the Chebyshev knots and perhaps additional nodes at θi, 1 ≤ i ≤ N
and n−N ≤ i ≤ n, such that

|S(x)− S̄(x)| ≤ c ω3(F, ρn(x)),

which in turn by (6.2) implies

(6.3) |F (x)− S̄(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1].

For later purposes, let S̄ be represented by

S̄(x) =:P ∗(x) +
n−1∑

i=n−N

qi(x− θi)2
+ +

n−1∑
i=1

λi(x− xi)2
+(6.4)

+
N∑
i=2

qi(x− θi)2
+, x ∈ [−1, 1],
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where, evidently, λi ≥ 0, i = N, . . . , n−N − 1, and by the same proof as above
(estimating qi), we conclude that

(6.5) λi|Ii|2 ≤ c ω3(F, ρn(xi)), i = N, . . . , n−N − 1.

We replace S̄ on the intervals [xN+1, 1] and [−1, xn−N−1], by the parabolas
S1(x) := 1

2
S̄ ′′(xN+1+)(x− xN+1)2 + S̄ ′(xN+1)(x− xN+1) + S̄(xN+1) and Sn(x) :=

1
2
S̄ ′′(xn−N−1−)(x−xn−N−1)2 +S̄ ′(xn−N−1)(x−xn−N−1)+S̄(xn−N−1), respectively.

By virtue of [11, Lemma 3] and (6.3), we obtain

|S̄(x)− S1(x)| ≤ c ω3(F, ρn(x)), x ∈ ∪N+1
i=1 Ii,

and

|S̄(x)− Sn(x)| ≤ c ω3(F, ρn(x)), x ∈ ∪ni=n−NIi,
where, again, we have applied (4.1) and (4.3).
Denote

Ŝ(x) :=


S̄(x), xn−N−1 < x < xN+1

S1(x), x ∈ ∪N+1
i=1 Ii,

Sn(x), x ∈ ∪ni=n−NIi.

Then, Ŝ ∈ ∆3, is piecewise quadratic with nodes only at the Chebyshev knots.
Finally, it follows by (6.3) that

(6.6) |F (x)− Ŝ(x)| ≤ c ω3(F, ρn(x)), x ∈ [−1, 1],

where we applied (4.1). We have proved (6.6) for n > 2N + 1. By virtue
of Whitney’s theorem the quadratic polynomial that interpolates F at −1, 0, 1,
yields an approximation to F which is bounded by ω3(F, 1) (and any quadratic
polynomial is automatically in ∆3). Hence, since ρn(x) ≥ 1

n2 , we may extend
(6.6) down to n ≥ 1. This completes our proof. �

For constructing the polynomial approximant in the next section, we need an
explicit representation of Ŝ (surprisingly, it looks asymmetric, but this is due
to the asymmetry of the truncated powers (· − t)2

+). This is the purpose of the
following lemma.

Lemma 8. The following representation of Ŝ is valid.

Ŝ(x) = P ∗(x)+
n−1∑

i=n−N

qi(x−θi)2 +
n−1∑

i=n−N

λi(x−xi)2 +
n−N−1∑
i=N+1

λi(x−xi)2
+ =: S̃(x),

x ∈ [−1, 1].

Proof. We only have to compare the values of Ŝ and S̃ near the end points,
for both are equal to S̄ in [xn−N−1, xN+1]. Observe that both S̃(x) and S1(x)
are quadratic polynomials in [xN+1, 1], that agree up to the second derivative at
xN+1, hence identical. Similarly, observe that both S̃(x) and Sn(x) are quadratic
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polynomials in [−1, xn−N−1], that agree up to the second derivative at xn−N−1,
hence identical. This completes the proof. �

7. Pointwise Polynomial Approximation

We are ready to prove Theorem 3. We begin with some auxiliary lemmas.

Lemma 9. For every n and 1 ≤ j ≤ n−1, there exist a polynomial Pj ∈ Pn+1∩∆3

and a number hj such that 0 ≤ hj ≤ cρ2
n(xj), and we have the following estimates.

(7.1)
∣∣(x− xj)2

+ + hj(x− xj)0
+ − Pj(x)

∣∣ ≤ cρ2
n(x)

(
|Ij|

ρn(x) + |x− xj|

)3

,

and

(7.2)
∣∣(x− xj)2

+ + hj(x− xj)0
+ − Pj(x)

∣∣ ≤ cρ8.5
n (x)

(ρn(x) + |x− xj|)6.5
.

Proof. By the proof of [2, Lemma 1] there exist Pj ∈ Pn+1∩∆3 and |hj| ≤ cρ2
n(xj),

such that

(7.3)
∣∣(x− xj)2

+ + hj(x− xj)0
+ − Pj(x)

∣∣ ≤ cρ17
n (xj)

(ρn(xj) + |x− xj|)15
,

and in turn (7.1) holds (see there).
Now, by virtue of (4.5),

(ρn(x) + |x− xj|)2 ≤ 2(ρ2
n(x) + |x− xj|2)

≤ c(ρn(xj)(ρn(xj) + |x− xj|) + |x− xj|2)

≤ c(ρn(xj) + |x− xj|)2,

which, in turn, combined with (4.6), yields

ρ17
n (xj)

(ρn(xj) + |x− xj|)15
≤
c
(
ρn(x)(ρn(x) + |x− xj|)

)8.5

(ρn(x) + |x− xj|)15

≤ cρ8.5
n (x)

(ρn(x) + |x− xj|)6.5
.

Substituting in (7.3) we obtain (7.2). We are left with having to prove that
hj ≥ 0. To this end, we note that [2, Lemma 1]) was proved using [6] construction
of convex polynomials σj ∈ Pn on [−1, 1] such that

σj(−1) = 0, σj(1) = 1− xj, 0 ≤ σ′j(x) ≤ 1, x ∈ [−1, 1].

(See [6, p. 164-165] for the definition of σj and the above properties.)
Hence,

σj(t)− (t− xj)+ =

∫ t

−1

σ′j(y)dy ≥ 0, t ∈ [−1, xj],
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and

σj(t)− (t− xj)+ =

∫ 1

t

(1− σ′j(y))dy ≥ 0, t ∈ [xj, 1].

Recall that the polynomials Pj and the constants hj were defined by

Pj(x) = 2

∫ x

−1

σj(t)dt and hj = 2

∫ 1

−1

(σj(t)− (t− xj)+)dt.

Thus, we immediately conclude that hj ≥ 0. This completes the proof. �

Remark 4. Note that Kopotun’s [6] construction of σj yields polynomials of degree
cn. Thus, in order to have the polynomials of degree n, we take the Kopotun
construction for n1 := [n/c]. However, in order to avoid unnecessary cumbersome
notation, we continue to call it n.

Remark 5. Since we will have to use often the inequalities (7.1) and (7.2), we
introduce a single notation for both right hand sides. Thus, denote

(7.4) An,j(x) := min

{
ρ2
n(x)

(
|Ij|

ρn(x) + |x− xj|

)3

,
ρ8.5
n (x)

(ρn(x) + |x− xj|)6.5

}
.

Lemma 10. There is an N such that for every n > 2N + 1 and N ≤ j ≤ n/2,
there exists a polynomial Qj ∈ Pn+1∩∆3 such that the following inequalities hold.

(7.5)
∣∣(x− xj)2

+ −Qj(x)
∣∣ ≤ cAn,j(x), x ∈ [−1, xj],

and

(7.6)
∣∣(x− xj)2

+ −Qj(x)
∣∣ ≤ c

(
1− x
1− xj

)2

|Ij|2 + cAn,j(x), x ∈ (xj, 1].

Proof. Fix N > 0 large enough, to be prescribed, and let b := κn−2 :=
maxN≤j≤n/2

16hj

1−xj
< 1, where κ = κ(n) = O(1). Set

Qj(x) := γjPj

(
x− ξj
1 + b

)
, N ≤ j ≤ n/2,

where the polynomials Pj are given in Lemma 9, and γj and ξj are determined
by the conditions Tj(1) = T ′j(1) = 0, where

Tj(x) := γj

(
x− ξj
1 + b

− xj
)2

+ γjhj − (x− xj)2.

The conditions Tj(1) = T ′j(1) = 0 are equivalent to the following system of two
equations: {

γj

(1+b)2
(1− xj − ξj − bxj)2 + γjhj = (1− xj)2

γj

(1+b)2
(1− xj − ξj − bxj) = 1− xj.

Eliminating γj, we obtain a quadratic equation for ξj,

ξ2
j + (2bxj + xj − 1)ξj + (1 + b)2hj + bxj(bxj + xj − 1) = 0.
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For N > 0 sufficiently large, the discriminant of the above equation, (1− xj)2 −
4(1 + b)2hj, is positive, and we take ξj to be the solution

ξj := −bxj +
(1− xj)−

√
(1− xj)2 − 4(1 + b)2hj

2
.

Then straightforward computations yield

γj =
2(1 + b)2

1 +
√

1− 4(1+b)2hj

(1−xj)2

,

and since hj ≥ 0, this implies that (1 + b)2 ≤ γj ≤ 2(1 + b)2 ≤ 8, and

(7.7) 0 ≤ γj
(1 + b)2

− 1 ≤ 4(1 + b)2hj
(1− xj)2

.

Also, since hj ≥ 0, we have by the definition of b,

0 ≤ ξj + bxj =
4(1 + b)2hj

(1− xj) +
√

(1− xj)2 − 4(1 + b)2hj
≤ 16hj

1− xj
≤ b.

Hence, |ξj| < b.
Set x′ := (x− ξj)/(1 + b). Then

(7.8) −1 ≤ x′ ≤ 1, and |x− x′| ≤ 2κn−2, x ∈ [−1, 1],

so that c1ρn(x) ≤ ρn(x′) ≤ c2ρn(x), and

(7.9) ρn(x) + |x− xj| ≤ cρn(x′) + |x′ − xj|+ cn−2 ≤ c(ρn(x′) + |x′ − xj|).

Fix j, N ≤ j ≤ n/2. If x ∈ [−1, 1] is such that x′ ∈ [−1, xj], then by Lemma 9
and (7.9), we obtain

(7.10)

∣∣∣∣Pj (x− ξj1 + b

)∣∣∣∣ ≤ cAn,j(x).

If x′ ∈ (xj, 1] and x ∈ [−1, xj], then 0 ≤ xj − x′ ≤ x − x′ ≤ 2κn−2 ≤ c|Ij|,
0 ≤ hj ≤ c|Ij|2, and An,j(x) ≥ c|Ij|2. Hence, by Lemma 9 and (7.9),∣∣∣∣∣Pj
(
x− ξj
1 + b

)
−
(
x− ξj
1 + b

− xj
)2

−hj

∣∣∣∣∣ ≤
∣∣∣∣Pj (x− ξj1 + b

)∣∣∣∣+(x′−xj)2+hj ≤ cAn,j(x).

Hence, together with (7.10), we obtain (7.5).
In order to prove (7.6), fix x ∈ (xj, 1]. If x′ ∈ [−1, xj], then (x−xj)2 ≤ c|Ij|2 ≤

cAn,j(x). Thus, by (7.10),

|(x− xj)2 +Qj(x)| ≤ (x− xj)2 + |Qj(x)| ≤ cAn,j(x),

and (7.6) is proved.
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Otherwise, x′ ∈ (xj, 1]. Then by Lemma 9 and (7.9), we obtain∣∣∣∣∣Pj
(
x− ξj
1 + b

)
−
(
x− ξj
1 + b

− xj
)2

− hj

∣∣∣∣∣ ≤ cAn,j(x),

and so

|(x− xj)2
+ −Qj(x)| <

∣∣∣(x− xj)2
+ − γj

(
x− ξj
1 + b

− xj
)2

− γjhj
∣∣∣(7.11)

+cAn,j(x), x ∈ (xj, 1].

Now by virtue of (7.7),∣∣∣(x− xj)2−γj
(
x− ξj
1 + b

−xj
)2

−γjhj
∣∣∣= |Tj(x)|

=
∣∣∣1− γj

(1 + b)2

∣∣∣(1− x)2<c

(
1− x
1− xj

)2

|Ij|2,

hence together with (7.11), we obtain (7.6). This completes our proof. �

We are ready to state the mirror of Lemma 4.

Lemma 11. Let N ≤ k < dn/2e, and assume that the nonnegative numbers αj
are such that

(7.12)
s∑

j=k

αj ≤ cω3(F, ρn(xs)), s = k, . . . , dn/2e.

Then for xl+1 < x ≤ xl, l = k + 1, . . . , dn/2e, and for xk+1 < x ≤ 1, for l = k,
we have

(7.13)

dn/2e∑
j=l

αj

( 1− x
1− xj

)2

≤ c̃ω3(F, ρn(x)).

Proof. The proof is a repetition of the proof of Lemma 4. We only need to observe
that, instead of (4.24), we have for all l ≤ s ≤ dn/2e,

ρ3
n(xs)

ρ3
n(x)

( 1− x
1− xs

)3/2

≤ 64,

for x > xl+1. �

We quote a lemma resembling what was done in Lemma 5.

Lemma 12. [2, Lemma 4] With N sufficiently large, let n > 2N + 1. Set

rj :=
1

26

(
(xj − xj−N)2 + (xj − xj+N)2

)
,

and put D = 20N2.
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If |bj| < rj
D|Ij | , then the linear system of equations
ηj + µi + νj = 1

2ηj(xj − xj−N) + 2νj(xj − xj+N) = bj
ηj
(
(xj − xj−N)2 + hj−N

)
+ µjhj + νj

(
(xj − xj+N)2 + hj+N

)
= rj,

has a unique solution (ηj, µj, νj), satisfying ηj ≥ 0, µj ≥ 0 and νj ≥ 0.

Remark 6. How big N is depends on the quantities hj, 1 ≤ j ≤ n−1 of Lemma 9,
so that it is an absolute constant since the Qj’s defining the hj’s are fixed (see
[2, Lemma 1]), so it is independent of F . Since we depend in our proof below on
the quadratic spline of Theorem 2, we take N ≥ 1900.

We are ready to prove Theorem 3.

Proof of Theorem 3. Recall that

(7.14) S̃(x) = P̃ (x) +
n−N−1∑
j=N+1

λj(x− xj)2
+,

where P̃ := P ∗+
∑n−1

i=n−N qi(·−θi)2+
∑n−1

i=n−N λi(·−xi)2, is a quadratic polynomial,
and that it satisfies

(7.15) |F (x)− S̃(x)| ≤ c ω3(F, ρn(x)).

Also, by (6.5) and (4.1),

(7.16) λj ≤ c ω3(F, |Ij|)|Ij|−2, j = N + 1, . . . , n−N − 1.

Let bj, N + 1 ≤ j ≤ n−N − 1, satisfying the requirements of Lemma 12, to be
prescribed. For the triples (ηj, µj, νj), of nonnegative numbers that add up to 1,
guaranteed by Lemma 12, we define

Rn := P̃ +
n−N−1∑
j=N+1

λj(ηjPj−N + µjPj + νjPj+N),

where the polynomials Pj are from Lemma 9. Then it follows that

R(3)
n (x) ≥ 0, x ∈ [−1, 1].

We will prove that

(7.17) |S̃(x)−Rn(x)| ≤ c ω3(F, ρn(x)),

which combined with (7.15) yields the required estimate, proving Theorem 3 for
n > 2N + 1.
To this end, we follow (part of) the proof of [2, Theorem 1] and set

ηjPj−N + µjPj + νjPj+N − (· − xj)2
+ =: vj + tj + uj,
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where

vj := ηj
(
Pj−N − hj−N(· − xj−N)0

+ − (· − xj−N)2
+

)
+ µj

(
Pj − hj(· − xj)0

+ − (· − xj)2
+

)
+ νj

(
Pj+N − hj+N(· − xj+N)0

+ − (· − xj+N)2
+

)
,

tj := ηj
(
(· −xj−N)2

+−2(xj −xj−N)(· −xj)+−(xj −xj−N)2(· −xj)0
+ − (· −xj)2

+

)
+ νj

(
(· −xj+N)2

+−2(xj −xj+N)(· −xj)+‖!−(xj −xj+N)2(· −xj)0
+−(· −xj)2

+

)
+ ηjhj−N

(
(· − xj−N)0

+ − (· − xj)0
+

)
+ νjhj+N

(
(· − xj+N)0

+ − (· − xj)0
+

)
,

and

uj := rj(· − xj)0
+ + bj(· − xj)+,

where rj and bj are from Lemma 12.
In order to derive the estimate for vj(x), we have by virtue of Lemma 9,

(7.18) |vj(x)| ≤ c
(
An,j−N(x) + An,j(x) + An,j+N(x)

)
.

Fix x ∈ [−1, 1] and separate the sum

n−N−1∑
j=N+1

λj|vj(x)| =
∑

j:ρn(x)≤|Ij |

λj|vj(x)|+
∑

j:ρn(x)>|Ij |

λj|vj(x)| =:
∑

′ +
∑

′′.

For j that satisfy |Ij| ≥ ρn(x), we have by (7.16),

λj ≤ c ω3(F, |Ij|)|Ij|−2 ≤ c

(
|Ij|
ρn(x)

+ 1

)3

|Ij|−2ω3(F, ρn(x))

= c
ω3(F, ρn(x))

ρ3
n(x)

(
1 +

ρn(x)

|Ij|

)3

|Ij|

≤ c
ω3(F, ρn(x))

ρ3
n(x)

|Ij|.

Also, in view of (4.3),

λj ≤ c
ω3(F, ρn(x))

ρ3
n(x)

min{|Ij−N |, |Ij+N |}.
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Therefore, by (7.18)∑
′ ≤
∑

′ cλjρ
8.5
n (x)

(
1

(ρn(x) + |x− xj−N |)6.5

+
1

(ρn(x) + |x− xj|)6.5
+

1

(ρn(x) + |x− xj+N |)6.5

)
≤ c ω3(F, ρn(x))ρ5.5

n (x)
n−1∑
j=1

|Ij|
(ρn(x) + |x− xj|)6.5

≤ c ω3(F, ρn(x))ρ5.5
n (x)

∫ ∞
ρn(x)

du

u6.5
< cω3(F, ρn(x)).(7.19)

For the other sum, note that if |Ij| < ρn(x), then ω3(F, |Ij|) < cω3(F, ρn(x)). Also
by (4.3), |Ij| ≤ cmin{|Ij−N |, |Ij+N |}. Hence, together with (7.18) and (7.16) we
obtain, ∑

′′ ≤ cω3(F, ρn(x))ρ2
n(x)

∑
′′
[

|Ij−N |
(ρn(x) + |x− xj−N |)3

+
|Ij|

(ρn(x) + |x− xj|)3
+

|Ij+N |
(ρn(x) + |x− xj+N |)3

]
≤ cω3(F, ρn(x))ρ2

n(x)
n−1∑
j=1

|Ij|
(ρn(x) + |x− xj|)3

≤ cω3(F, ρn(x))ρ2
n(x)

∫ ∞
ρn(x)

du

u3
< cω3(F, ρn(x)).(7.20)

Thus, combining (7.19) and (7.20), we obtain

(7.21)
n−N−1∑
j=N+1

λj|vj(x)| < cω3(F, ρn(x)).

At the same time the support of the function tj is contained in [xj+N , xj−N ], so
that for x ∈ Ii, 1 ≤ i ≤ n,

n−N−1∑
j=N+1

λj|tj(x)| =
min{n−N,i+N−1}∑

max{N+1,i−N}

λj|tj(x)|

≤ c

min{n−N−1,i+N−1}∑
max{N+1,i−N}

ω3(F, ρn(xj)) ≤ cω3(F, ρn(x)),(7.22)

since |tj(x)| ≤ c |Ij|2 and we applied (7.16), and by (4.1) and (4.2),

ω3(F, ρn(xj))≤cω3(F, ρn(x)), max{N+1, i−N}≤j≤min{n−N−1, i+N−1}.
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Finally, we estimate
∑n−N−1

j=N+1 λjuj. To this end, we have the piecewise constant

n−N−1∑
j=N+1

αj(x− xj)0
+,

with 0 ≤ αj := λjrj ≤ cω3(F, ρn(xj)) (see (7.16)). We repeat what we have done
in the proof of Lemma 7. We deal separately with the summation on j ≥ dn

2
e

and with the rest. We begin with k1 = n −N − 1 and (if possible) find s1 < k1

such that the conditions of Lemma 3 are satisfied for the pair (s1, k1). Then we
take k2 = s1 − 1 and find s2 < k2 with similar properties. If after a few steps,
we arrive at dn

2
e = sm < km, with the pair (sm, km) satisfying the conditions of

Lemma 3, we are done. Otherwise, the process stops, that is, we have an index
k ≤ n−N − 1 (which again may be k = k1), such that

(7.23)
k∑
j=s

αj ≤ CDω3(F, ρn(xs)), s = dn/2e, . . . , k.

We go through a similar process for the other summation, that is, for j ≤ dn/2e.
Again, this process may end with s′m′ = dn/2e, in which case we are done, or we
may have an index k′ ≥ N + 1 such that,

(7.24)
s′∑

j=k′

αj ≤ CDω3(F, ρn(xs′)), s′ = k′, . . . , dn/2e.

For the sums of the former type we obtain by the same proof as of Lemma 7, non
decreasing piecewise linear functions

sm∑
j=k1

βj(x− xj)+ and

k′1∑
j=s′

m′

βj(x− xj)+,

such that∣∣∣∣∣∣


s′
m′∑

j=N+1

+
n−N−1∑
j=sm

(αj(x− xj)0
+−βj(x− xj)+

)∣∣∣∣∣∣≤cD ω3(F, ρn(x)), x ∈ [−1, 1],

with |βj| < αj

D|Ij | .

Thus, with bj defined by λjbj := βj, j = k1, . . . , sm and j = s′m′ , . . . , k
′
1,

(7.25)

∣∣∣∣∣∣


s′
m′∑

j=N+1

+
n−N−1∑
j=sm

λjuj(x)

∣∣∣∣∣∣ ≤ cD ω3(F, ρn(x)), x ∈ [−1, 1].

Now, we have to deal with the remaining elements, that is, these in (7.23) and
(7.24). We go back to the basic representation (7.14) and replace the truncated
powers (x−xj)2

+, j = k′, . . . , dn/2e, by the polynomials of Lemma 10. One should
note that unlike the spline case (see Lemma 6), the polynomials do not coincide
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with the truncated powers (x−xj)2
+ on [−1, xj], and that our estimates on (xj, 1]

do not involve only the terms
(
(1−x)2/(1−xj)2

)
|Ij|2, but also the terms An,j(x).

The sum of the terms An,j(x) is dealt with by the same proof for the vj’s (see
(7.19) and (7.20)), and we estimate the sum of the terms

(
(1−x)2/(1−xj)2

)
|Ij|2,

as in the proof of Lemma 7. Hence, we obtain for this sum, the required estimate
by Lemma 11. Finally, we apply (5.14) to move the truncated powers (x− xj)2

+,
j = dn/2e, . . . , k to the interval [0, 1], and similarly obtain the approximating
polynomials and the required estimates as explained above. So, we summarize
that

(7.26)

∣∣∣∣∣∣


k∑
j=dn/2e

+

dn/2e∑
j=k′

uj(x)

∣∣∣∣∣∣ ≤ cω3(F, ρn(x)), x ∈ [−1, 1].

Combining (7.21), (7.22), (7.25) and (7.26), we obtain (7.17). We complete the
proof for 2 ≤ n ≤ 2N + 1, by taking the interpolating quadratic we took in the
proof of Theorem 2. This completes the proof. �
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