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MODELLING THE SOLIDIFICATION OF A POWER-LAW
FLUID FLOWING THROUGH A NARROW PIPE

T. G. MYERS AND J. LOW

Abstract. We develop a mathematical model to simulate the solidification
process of a non-Newtonian power-law fluid flowing through a circular cross-
section microchannel. The initial system consists of three partial differential
equations, describing the fluid flow and temperature in the liquid and solid,
which are solved over a domain specified by the Stefan condition. This is re-
duced to solving a partially coupled system consisting of a single partial differ-
ential equation and the Stefan condition. Results show qualitative differences,
depending on the power law index and imposed flow conditions, between New-
tonian and non-Newtonian solidification. The model behaviour is illustrated
using power law models for blood and polyethylene oxide.

1. Introduction

Solidification of fluid flowing through a pipe is a classical problem motivated
by, for example, the damage caused as water expands upon freezing or the devel-
opment of lava tubes [1, 2]. Recently interest has been stimulated by applications
on the micro and nano-scales. One such application arises due to the difficulties
of manufacturing valves suitable for use in micro-channels since these obviously
occupy space and induce flow resistance (the difficulties are discussed in detail
in [3, 4]). To avoid the issue of miniaturization of valves researchers have come
up with a variety of new techniques, one of these being the phase change valve,
where an external cooling system acts to freeze the fluid within the channel. The
idea was first proposed by Bevan and Mutton, see [5, 6] and extended by nu-
merous research groups, see for example the review of [4]. This form of valve
is particularly useful when rapid closure is not essential, such as in micro-PCR
chips, liquid chromatography and electrophoresis. In the field of cryopreservation
a standard technique involves solidifying a fluid-cell mixture contained within a
tube which is then immersed in liquid nitrogen. Understanding the solidification
process is an important step towards minimising cell damage [7, 8].
Mathematical models of solidification in small channels invariably deal with

Newtonian fluids. In practice most industrial and biological fluids are non-
Newtonian and so there is a clear need to extend the scope of these studies
to incorporate such fluids. This is the purpose of the present paper.

Key words and phrases. Stefan problem, Power-law fluid, Microchannel flow, Phase change,
Phase change valve, Cryopreservation.
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2 T. G. MYERS AND J. LOW

2. Mathematical Model

The equations describing the laminar flow of an incompressible power law fluid
in a circular cross-section pipe of radius R are well-known:

ρl
du

dt
= −∇p+∇ · σ ∇ · u = 0 ,(1)

where ρ denotes the density, u the velocity, p the pressure and σ the stress tensor.
When the flow is primarily directed in the axial direction we may neglect all

terms in the stress tensor, with the exception σxr = m(−ur)
n−1, where m is

the consistency and n the power law index. The minus sign is employed since
the velocity gradient, ur, is negative, see [9, 10]. To describe solidification these
equations must be coupled to the thermal problem

∂T

∂t
+ u · ∇T = αl∇2T 0 < r < h(x, t)(2)

∂θ

∂t
= αs∇2θ h(x, t) < r < R(3)

where T, θ are the liquid and solid temperatures and α is the thermal diffusivity.
The position of the solidification front, r = h(x, t), is determined through the
Stefan condition

ρsLf
dh

dt
= ks

∂θ

∂r

∣∣∣∣
r=h

− kl
∂T

∂r

∣∣∣∣
r=h

.(4)

The problem configuration is shown on Figure 1.

r=h(x,t)

u(x,t)
solid

liquid

r

x

Figure 1. Problem configuration.

With the exception of the power law stress tensor, the above equations are
identical to those describing the solidification of a Newtonian fluid studied in [11]
(which in turn were adapted from the models in [12, 13]). In [11] the governing
equations were non-dimensionalised in the standard manner consistent with lu-
brication theory. Obviously we may also non-dimensionalise the above system,
however, if the flow is driven by a pressure gradient (and so ∆p is fixed) then the
velocity scale depends on the power law parameters. Specifically, with a Newto-
nian fluid U = (R2∆p/µL) but with a power-law fluid, U = (Rn+1∆p/mL)1/n .
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This means that when we compare results for different fluids, with different values
of n, then the definition of the velocity scale changes and so the comparisons are
not appropriate. For example in [11] the pipe closure time was plotted against
the Péclet number, Pe = UR2/(αlL). With a power law fluid, if the definition
of U changes with each fluid then so will the definition of Pe. For this reason
we will work in dimensional form, whilst retaining the approximations suggested
from the earlier non-dimensional study.
Firstly, we simplify the flow equations in line with lubrication theory, which

requires a small aspect ratio and small reduced Reynolds number (the aspect
ratio squared multiplied by the Reynolds number) [14]. Consequently, the flow
is described by

−m

r

∂

∂r

(
r

(
−∂u

∂r

)n)
≈ ∂p

∂x
,

∂p

∂r
≈ 0,

∂u

∂x
+

1

r

∂

∂r
(rw) = 0.(5)

These equations are subject to no-slip and a momentum balance at the solidifi-
cation front and symmetry at the centre-line, see [11]

u(x, h(x, t), t) = 0, w(x, h, t) =

(
1− ρs

ρl

)
∂h

∂t
,(6)

∂u

∂r

∣∣∣∣
r=0

= 0, w(x, 0, t) = 0.(7)

Equation (5b) indicates p = p(x, t). This allows Eq. (5a) to be integrated

u =

[
1

2m

(
−∂p

∂x

)]1/n(
n

n+ 1

)[
h

n+1
n − r

n+1
n

]
.(8)

Since the aim of this study is to determine when the flow is stopped the flux is
an important quantity

Q = 2π
∫ h

0
ur dr = π

(
n

3n+ 1

)[
1

2m

(
−∂p

∂x

)]1/n
h

3n+1
n .(9)

Since the fluid is incompressible Q = Q(t) and so Eq. (9) allows us to determine
the pressure gradient in terms of the flux and position of the solidification front.
This permits the removal of the pressure gradient from the velocity expression

u =
Q

πh2

(
3n+ 1

n+ 1

)[
1−

( r
h

)n+1
n

]
.(10)

Integrating Eq. (9) we may write the pressure drop along the pipe as

∆p = pin − pout = 2m

(
Q

π

[
3n+ 1

n

])n ∫ L

0
1

h3n+1 dx .(11)
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4 T. G. MYERS AND J. LOW

The incompressibility condition, Eq. (5c), then gives the velocity in the radial
direction

w = −1

r

∂

∂x

{
Q

πh2

(
3n+ 1

n+ 1

)[
r2

2
− n

3n+ 1

r(3n+1)/n

h(n+1)/n

]}
.(12)

The equivalent Newtonian expression may be retrieved from the above equations
by setting n = 1, see [10, 11].
Before moving on to the thermal problem we make a change of co-ordinate by

defining r̂ = r/h. This fixes the boundary of the flow domain to r̂ ∈ [0, 1]. Noting
that r̂x = −hxr̂/h we may write

w = −Q

π

(
3n+ 1

n+ 1

)
1

r

∂

∂x

{[
r̂2

2
− n

3n+ 1
r̂(3n+1)/n

]}
= r̂hxu .(13)

As will be seen, this significantly simplifies the thermal problem.
Under the same restrictions as applied to the flow equations the thermal prob-

lem reduces to(
u
∂T

∂x
+ w

∂T

∂r

)
=

αl

r

∂

∂r

(
r
∂T

∂r

)
,

1

r

∂

∂r

(
r
∂θ

∂r

)
= 0(14)

subject to

θ|r=R = Tw, θ|r=h = T |r=h = Tf ,
∂T

∂r

∣∣∣∣
r=0

= 0, T |x=0 = T0 .(15)

Hence

θ = Tf +
Tw − Tf

ln(R/h)
ln r̂ .(16)

In terms of the new radial co-ordinate the liquid temperature T (r, x, t) =
T (x, r̂(x, r, t), t) is described by(

u

[
∂T

∂x
− hxr̂

h

∂T

∂r̂

]
+

hxr̂u

h

∂T

∂r̂

)
= u

∂T

∂x
=

αl

h2

1

r̂

∂

∂r̂

(
r̂
∂T

∂r̂

)
.(17)

Substituting for the liquid velocity, via Eq. (10), leads to a separable equation
for T

Q

π

(
3n+ 1

n+ 1

)(
1− r̂

n+1
n

) ∂T

∂x
=

αl

r̂

∂

∂r̂

(
r̂
∂T

∂r̂

)
.(18)

This is a good time to highlight the importance of the new co-ordinate r̂. The
position of the solidification front r = h(x, t) is still unknown and determined by
the Stefan condition (4). If we work in terms of r then the liquid temperature
involves both velocities u,w and is applied over the unknown domain r ∈ [0, h].
The Stefan condition is then coupled to the flow problem and the two equations
must be solved in parallel. Working in terms of r̂ the liquid temperature equation,
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5

Eq. (18), is independent of h and so may be solved independently. Once this is
done the temperature gradient may be substituted into the Stefan condition

ρsLfh
dh

dt
= ks

∂θ

∂r̂

∣∣∣∣
r̂=1

− kl
∂T

∂r̂

∣∣∣∣
r̂=1

(19)

to determine h(x, t).

Property [units] Blood Polyethylene Oxide

Power-Law index n 0.6 0.4133

Fluid Consistency m [Pa sn] 0.035 13.787

Melting Temperature Tf [◦C] -0.3 63

Liquid Density ρl [kg/m
3] 1060 1130

Latent Heat of Fusion Lf [J/ kg] 3.15× 105 3.8× 105

Specific Heat Capacity cp [J/ kg K] 3594 2040

Solid Thermal Conductivity

ks [W/mK] 1.589 0.17

Liquid Thermal Conductivity

kl [W/mK] 0.492 0.0525 (*)

Liquid Thermal Diffusivity

αl = kl/(ρlcp) [m
2/s] 1.29× 10−7 2.2× 10−8

Table 1. Fluid properties taken from various sources [10, 15, 16,
17, 18, 19, 20, 21]. (*) Calculated from ks by using the same ratio
of kl/ks as that for blood.

3. Results

The initially complex problem of solving the flow and heat equations (1–3) over
a domain specified by the Stefan condition (4) has been reduced to solving two
simple equations (18,19). Equation (18) may be solved analytically for certain
values of n but in general there is no closed form solution, hence we now seek
a numerical solution. Our scheme begins with a clean channel, h = R and the
initial flux Q(0) is determined in terms of the specified pressure drop via equa-
tion (11). The flux Q(0) is then substituted into the heat equation, Eq. (18)
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6 T. G. MYERS AND J. LOW

which is solved using Matlab routine PDEPE, subject to the appropriate bound-
ary conditions specified in equation (15), to determine the liquid temperature T .
This also outputs the gradient Tr̂ required for the Stefan condition. The deriva-
tive of equation (16) provides θr̂ and so we may integrate the Stefan condition,
Eq. (19), to update h(x, t). The flux is then recalculated and the process contin-
ued until h = 0 at some point. We now illustrate the solutions obtained through
this process via two examples, using parameter values appropriate for blood and
polyethylene oxide (PEO). The fluid parameter values, taken from a variety of
sources [10, 15, 16, 17, 18, 19, 20, 21], are given in Table 1. The exception being
the thermal conductivity of liquid PEO, which we were unable to find. Instead
we used the ratio for kl/ks for blood to calculate kl for PEO. For all the results,
we take the length of the microchannel length to be 10cm and the radius as 1mm.
In Fig. 2 we show the evolution of a solidification front for blood flowing through

a cooled pipe. The solid lines indicate the movement using a non-Newtonian
model whilst the dashed lines demonstrate how solidification would progress with
an equivalent Newtonian fluid. The Newtonian equivalent is chosen such that the
initial flux is the same as the non-Newtonian model. According to Eq. (9),
the initial Newtonian and non-Newtonian fluxes match when

µ =

(
3n+ 1

8n

)
(2m)1/nR(n−1)/n(−px)

(n−1)/n .(20)
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Figure 2. The position of the solidification fronts for blood at times t =
9.9, 20.5, 31.1, 41.7s. The solid lines represent the non-Newtonian model, the
dashed lines are the equivalent Newtonian case.

Note that the Newtonian flux is obtained by setting h = R, n = 1 and m = µ
in Eq. (9). The results are obtained using parameter values given in Table 1 and
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7

with a pressure drop along the channel of 1.36×103 Pa, corresponding to an initial
flux of 4.4× 10−6 m3s−1, and T0 = 9.3◦C, Tf = −0.3◦C, Tw = −3.27◦C at times
t = 9.9, 20.5, 31.1, 41.7s. The equivalent Newtonian viscosity from Eq. (20)
is 0.0012 Pa s. At early times both fluid models show similar solidification
rates, however as time proceeds the non-Newtonian model starts to solidify more
rapidly. This result appears counter-intuitive since in [11] it is shown that faster
flows lead to slower solidification and one would expect a shear thinning fluid to
flow faster than an equivalent Newtonian fluid. The problem may be traced to the
lack of realism of the power-law model near the central region, where ur → 0.
As the velocity gradient tends to zero the viscosity (∝ un−1

r ) tends to infinity
and so acts to slow down the fluid. Hence for a fixed pressure gradient the shear
thinning fluid can in fact flow more slowly than a Newtonian counterpart and
so solidify more rapidly. This problem with the power law model is discussed in
detail in [10, 22].
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Figure 3. The closure time against the imposed pressure drop across the
channel for blood when T0 = 9.3◦C, Tf = −0.3◦C and Tw = −3.27◦C. Circles
points are those for the non-Newtonian case, whilst the cross points correspond
to the equivalent Newtonian case. The lines are for guidance.

In Fig. 3 we plot the closure time against pressure drop for both non-Newtonian
and Newtonian blood. Increasing the pressure drop leads to an increase in flow
rate which slows down the solidification process until eventually a stage is reached
where closure no longer occurs. In this example, for the non-Newtonian case, we
find the channel no longer closes when ∆p > 1600Pa. For the case shown in
Fig. 2, with ∆p = 1.36×103 we see closure will occur for t ≈ 50s. The equivalent
Newtonian graph takes the same qualitative form as that of its non-Newtonian
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8 T. G. MYERS AND J. LOW

counterpart. For low pressure drops the curves are identical, for larger values
Newtonian closure is slower for a given pressure drop and the critical pressure
drop is reduced to around 1415 Pa.
In the analysis of [11] it is shown that the closure time for relatively low pressure

drops (well below the critical value) is controlled through conduction: advection
only becomes important as the pressure drop increases. In Figure 3 this may
be observed through the approximately constant value of the closure time for
∆P < 800 Pa. The subsequent increase in closure time reflects the increasing
importance of advection as ∆P grows. For the constant closure time region, a
time-scale for solidification may be obtained from the Stefan condition, Eq. (4),

τ = ρsLfR
2/(ks∆T )(21)

where the temperature scale ∆T = T0 − Tw denotes the temperature change
between the wall and incoming fluid (note, in [11] ∆T is incorrectly written as
Tf − Tw). The factors affecting solidification are then easy to read off: for a
given fluid the solidification time increases proportional to R2 or (T0 − Tw)

−1.
Taking values from Table 1 (we assume that ρs = ρl) we find that for blood the
closure time τ ≈ 2.1× 108R2/∆T and specifically for the current problem, with
R = 1mm, T0 − Tw = 9.6◦C we find τ ≈ 16.7s. The minimum time on Figure 3
is around 17s.
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Figure 4. The position of the solidification fronts for PEO at times t =
57.3, 118.1, 319.0, 384.4s. The solid lines represent the non-Newtonian model,
the dashed lines are the equivalent Newtonian case.

In Fig. 4 we show solidification curves at times t = 57.3, 118.1, 319.0, 384.4s
for PEO subject to a pressure drop 5.41× 104 Pa (and so an initial flux Q(0) =
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7.8×10−7 m3s−1), T0 = 73◦C, Tf = 63◦C, Tw = 59.9◦C and equivalent Newtonian
viscosity µ = 0.2738 Pa s. Since the viscosity of PEO is much greater than that
of blood significantly higher pressures are required to drive the flow. However,
the greater solidification times when compared to blood are primarily due to
the decrease in thermal conductivity. This is clear from Eq. (21), where τ is
proportional to the inverse of ks: PEO has a ks value ten times lower than
that of blood. Qualitatively the results are similar to those shown in Fig. 2
in that the non-Newtonian model shows faster solidification than the equivalent
Newtonian fluid. The closure time against pressure drop is shown in Fig. 5.
The critical pressure drop, beyond which closure will not occur, is around ∆p =
6.06×104, 5.5×104Pa for the non-Newtonian and Newtonian models respectively.
We can see that for the example of Figure 4 we expect the non-Newtonian model
to exhibit closure at around τ = 400s whilst the Newtonian model has τ ≈ 1600s.
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Figure 5. The closure time against the imposed pressure drop across the
channel for Polyethylene oxide when T0 = 73◦C, Tf = 63◦C and Tw = 59.9◦C.
The circle points correspond to the non-Newtonian case whilst the crosses are
those for the Newtonian and the lines are for guidance.

The solidification curves shown in Figs. 2 and 4 were deliberately chosen to
highlight differences in the models and so both examples use a ∆p close to the
critical value for the Newtonian fluid. Hence they show a similar solution form
in that the solidification fronts show an approximately linear decrease away from
the entrance region. However, if we decrease ∆p then the solutions will start
to coincide. The Newtonian analysis of [11] shows that at sufficiently low ∆p
the profiles become flat away from the entrance, and obviously since the models
coincide for low pressure drop this result will hold for non-Newtonian liquids. This
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10 T. G. MYERS AND J. LOW

has important implications for cryopreservation. If the profile is linear when the
flow is stopped then there will be a significant amount of trapped fluid which
may subsequently expand on freezing and so add stress to the system. A flat
profile will have a relatively small amount of trapped fluid, leading to a lower
stress system.

4. Conclusion

We have derived a mathematical model to describe the solidification of a power-
law fluid inside a narrow channel and solved the model equations using MATLAB.
Taking blood and polyethylene oxide as examples, we find that in general the
shear thinning fluid freezes faster than the Newtonian equivalent under the same
pressure drop. This change in rate may be due to two causes, firstly there is the
well-known inadequacy of the power law model: a shear thinning fluid in fact has
an infinite viscosity along the flow centre-line and the increased viscosity in this
region acts to slow the fluid down, so leading to more rapid freezing. Secondly,
it is difficult to prescribe an equivalent Newtonian fluid: here we have chosen a
Newtonian viscosity that provides the same initial flux as the power law fluid,
but as the flux decreases this chosen viscosity will diverge from the average non-
Newtonian viscosity and so the models may not be equivalent. In general, for low
flow rates or equivalently low pressure drops the solidification time was shown to
be independent of the flow rate. Beyond a certain point increasing the flow rate
increases the solidification time. A decrease in the power law index n < 1 will
decrease the solidification time.
Both Newtonian and non-Newtonian fluids show a critical pressure drop, above

which the flow will never completely stop. The value of the pressure drop increases
with decreasing power law index. The solidification profile is also affected by the
pressure drop: for low pressure drops the front is approximately flat, for higher
values there is a linear decrease. This has significant consequences for phase
change valves or cryopreservation if the fluid expands on freezing. A flat profile
will stop flow with little liquid in the frozen region and so little subsequent thermal
expansion. However a linear profile will leave a high proportion of liquid when
flow stops which may then expand and damage equipment or cells. For this point
of view the flat profile is clearly most desirable.
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