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CONTINUUM MATHEMATICS AT THE NANOSCALE

ABSTRACT. In this paper we discuss three examples where continuum theory may
be applied to describe nanoscale phenomena:

1. Enhanced flow in carbon nanotubes (CNTs) – This model shows that the experi-
mentally observed enhancement can be explained using standard flow equations
but with a depletion layer between the liquid and solid interfaces.

2. Nanoparticle melting – Nanoparticles often exhibit a sharp increase in melting
rate as the size decreases. A mathematical model will be presented which pre-
dicts this phenomena.

3. Nanofluids – Experimental results concerning the remarkable heat transfer char-
acteristics of nanofluids are at times contradictory. We develop a model for the
thermal conductivity of a nanofluid, which provides much higher predictions
than the standard Maxwell model and a better match to data.

1. INTRODUCTION

Continuum theory may be applied when there is a sufficently large sample size to
ensure that statistical variation of material quantities, such as density, is small. For
fluids the variation is often quoted as 1% [1]. Assuming a spherical sample Nguyen
and Werely [2] suggest this level of variation requires a minimum of 104 atoms and so
deduce a critical dimension of the order 10 and 90nm for liquids and gases respectively.
In fact by comparing molecular dynamics simulations to computations based on the
Navier-Stokes equations Travis et al [4] show that continuum theory may be applied
to water flow down to around 3nm. Thomas et al [6] suggest a figure of 1.66nm.
In the field of heat transfer and phase change it has been suggested that continuum
theory requires particle radii greater than 2nm [3]. Kofman et al [7] state that at scales
smaller than 5nm the melting process is discontinuous and dominated by fluctuations,
Kuo et al [8] observed structural changes and a ‘quasi-molten’ state in their study of
nanoparticle melting between 2-5nm.

Nanoscale is typically described as involving materials with at least one dimen-
sion below 100nm [9], so there is clearly a range of sizes where continuum theory
may be applied to nano phenomena. In this paper we will apply continuum theory to
problems in fluid and heat flow and demonstrate how seemingly anomalous behaviour
may be explained without resorting to molecular dynamics or empirically based ad-
justments. In §2 we employ a concept from non-Newtonian fluid dynamics, that of
a bi-viscosity fluid, to explain why observed flow rates of water in carbon nanotubes
are much higher than that predicted by classical theory. The model also suggests a
physical interpretation for the Navier slip condition. In §3 we investigate the melting

Key words and phrases. carbon nanotubes, enhanced flow, nanoparticle melting, thermal conductiv-
ity, nanofluid.
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2 MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID

of nanoparticles. As the particles decrease in size, and so the ratio of bulk to surface
atoms decreases, it becomes easier for surface atoms to leave the particle. This results
in a decrease in the melt temperature. Using a form of the Gibbs-Thompson relation to
describe the variation of melt temperature with size we produce a model that explains
the experimentally observed ‘abrupt melting’. Finally, in §4 we investigate the thermal
conductivity of nanofluids (a nanofluid is a fluid containing nanoparticles). The clas-
sical Maxwell model to describe the heat conduction of a solid in liquid suspension is
known to significantly underpredict the thermal response of a nanofluid. The Maxwell
model is based on a static analysis. Using an approximate solution method to the heat
flow problem we obtain an expression for the thermal conductivity of the fluid which
shows much better agreement with experiment.

2. ENHANCED FLOW IN CARBON NANOTUBES (CNTS)

Carbon nanotubes are a cylindrical nanostructure formed from graphene. They have
unusual properties: they are extremely good at conducting heat and electricity and
have remarkable strength. Consequently there is intensive research into their uses
and there is a wide variety of suggested applications. One application, in textiles, is
based on the observation that CNTs transport water at a much faster rate than predicted
by classical flow theory. Papers in Nature and Science [10, 11] reported increases
by orders of magnitude, although recent work provides more conservative estimates:
Whitby et al [12] quote a maximum increase by a factor of 45.

The classical model for flow in a circular cylindrical pipe is described by the Hagen-
Poiseuille equation which leads to an expression for the fluid flux:

QHP =−πR4 pz/(8µ) ,(1)

where pz is the pressure gradient along the pipe, R is the radius and µ the fluid vis-
cosity. In CNTs it is well documented that the flux is significantly higher than this
value.

A popular approach to explain this enhancement is to introduce a slip-length into
the mathematical model, that is, the no-slip boundary condition u(R) = 0 is replaced
by

u(R) =−Ls
∂u(R)

∂ r
(2)

where Ls is the slip-length and u the velocity. This leads to a modified flux expression

Qslip = QHP

(
1+

4Ls

R

)
.(3)

The literature typically discusses flow enhancement, which is defined as the ratio of the
observed to predicted fluxes, εslip = Qslip/QHP. Clearly any magnitude of enhance-
ment can be accounted for by using an appropriate value for Ls. Comparison of theory
with experiments on the microscale leads to sensible values of the slip length, which
are much smaller than the channel dimension. Yet, when dealing with nanochannels
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MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID 3

the slip lengths are typically on the order of microns. There is no theory to predict the
slip length for a liquid flowing past a solid however, there is one for gases. In this case,
the slip length is of the order of the mean free path of the gas [13] (for water the mean
free path is 0.3 nm). To match their experimental observations Holt et al. [10] and
Majumder et al. [11] quote slip lengths on the order of microns. Of course the high
values of slip-length in CNT studies have led some authors to question the validity
of the slip modified Hagen-Poiseuille model [14, 15]. Cottin-Bizonne et al. [17] state
that the slip-length should have a single value independent of the tube radius and much
less than those quoted in the literature. They attribute some of the high experimental
values to contamination by hydrophobic particles.

An alternative explanation to the slip-length is based on the fact that CNTs are hy-
drophobic. The strength of attraction between water molecules is greater than the
attraction between the hydrophobic solid and the water [18]. It has been postulated that
hydrophobicity may result in gas gaps, depletion layers or the formation of vapour: all
descriptions result in a region of low viscosity close to the wall and experimentally
this may be interpreted as ‘apparent’ slippage [19, 18]. Poynor et al [16] state that
their synchrotron x-ray data unambiguously demonstrates a depletion layer is formed
when water meets a hydrophobic surface. Depletion layers have also been predicted
via molecular dynamics (MD) simulations [20]. Joseph and Aluru [21] observed a
hydrogen bonding depletion layer, Barrat and Bocquet [23] show that the first layer of
water molecules is depleted in the presence of a hydrophobic wall.

Assuming the presence of a depletion layer standard fluid equations may be em-
ployed using a bi-viscosity model, with a bulk flow region occupying the centre of the
channel and a depleted region with low viscosity near the walls. If the velocity and
shear stress are matched at the interface, defined by r = α , then the flux is

Qµ = QHP
α4

R4

(
1+

µ1

µ2

(
R4

α4 −1
))

,(4)

where µ1,µ2 represent the bulk and depletion layer viscosities respectively, µ1 ≫ µ2
and α is the radius of the bulk region (for CNTs experiments indicate a depletion layer
thickness δ = 0.7nm, hence α = R− 0.7nm). The flow enhancement is defined as
the ratio εµ = Qµ/QHP. Taking data from [12] it turns out that µ2 ≈ 0.018µ1. The
viscosity of air and oxygen are approximately 0.02 that of water. Obviously these are
two readily available gases, the air could be entrained somehow or dissolved in the
water, the oxygen is already contained in the water.

With gas flow there is a theory to account for apparent slip over a solid surface
however no such theory has been found for fluids. Comparison of the above flux
expressions with slip and a depletion layer leads to an expression for an effective slip-
length for a fluid

Ls = δ
(

µ1

µ2
−1

)[
1− 3

2
δ
R
+

(
δ
R

)2

− 1
4

(
δ
R

)3
]
.(5)
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4 MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID

This is a monotonically decreasing function of R (as predicted by Thomas & Mc-
Gaughey [14]). Further, noting that µ1/µ2 ≫ 1, we can identify three distinct regimes:

1. For sufficiently wide tubes, such that δ/R ≪ µ2/µ1, then εµ ≈ 1. There is no
noticeable flow enhancement and the no-slip boundary condition will be sufficient,
Ls ≈ 0. This should hold approximately for R > 3µm. On smooth surfaces slip is not
observed in wide tubes.
2. For moderate tubes, such that (δ/R)(µ1/µ2) is order 1 but δ/R ≪ 1 then only the
leading order term of Ls applies and

εµ ≈ 1+
4δ
R

(
µ1

µ2
−1

)
.(6)

This holds approximately for R ∈ [21nm,3µm] and corresponds to a constant slip
length, Ls = δ µ1/µ2. It holds for approximately R ∈ [21nm,3µm]. Numerous pa-
pers report constant slip-lengths around 20-40nm [17, 22] (for R ∈ ‘some nanometers
up to several hundreds of nanometers’).
3. For very small tubes where δ/R is order 1 then the full expression for εµ is required
and the slip length varies with tube radius. Thomas et al [6] suggest Ls varies with R for
R ∈ [1.6,5]nm and show ε ≈ 32 when R = 3.5nm. The above model predicts ε ≈ 33.2
for this R value. It also predicts a maximum enhancement (obtained by setting R = δ )
of around 50 which compares well with the maximum value of 45 observed by Whitby
et al [12].

If we define an average viscosity, say by equating fluxes from a bi-viscosity and
single viscosity model, then it is clear that µav decreases with tube radius (since the
depletion region will occupy a larger proportion of the tube as R decreases). This is in
agreement with MD simulations see, for example, [24, 6].

3. NANOPARTICLE MELTING

Nanomaterials are currently the subject of intense investigation due to their unique
properties and a wide range of novel applications such as in optical, electronic, cat-
alytic and biomedical applications, single electron tunneling devices, nanolithography
etc [25, 26, 27]. One reason for their interesting behaviour is that they have a very
large ratio of surface to volume atoms which can have a significant effect on the ma-
terial properties [3]. A particular example of this is the well-documented decrease in
phase change temperature as the material dimensions decrease [27]. The experiments
of Buffat and Borel [39] show a decrease of around 500K for gold particles with ra-
dius slightly greater than 1nm. The molecular dynamics simulations of Shim et al [27]
show a decrease of more than 800K below the bulk melt temperature (a 40% decrease)
for gold nanoparticles with a radius around 0.8 nm. Drugs with poor water solubility
may be administered as nanoparticles to improve their uptake. Bergese et al [28] and
Liu et al [40] study antibiotic and antianginal drugs, which exhibit a melting point
depression of around 30K (a 10% decrease from the bulk value). Since gold has low
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MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID 5

toxicity, gold nanoparticles also make good carriers for drug and gene delivery [29].
Many applications require the particles to melt, after serving their primary purpose,
and so pass through the system as disperse molecules. Hence it is important to under-
stand the thermal response of a nanoparticle and its likely phase change behaviour.

If the density and specific heat remain approximately constant in each phase the
melt temperature may be estimated from the following generalised Gibbs-Thomson
relation

(7) Lm

(
Tm

T ∗
m
−1

)
+∆c

[
Tm ln

(
Tm

T ∗
m

)
+T ∗

m −Tm

]
=−2σslκ

ρs

where Lm is the latent heat, Tm is the temperature at which the phase change occurs,
T ∗

m the bulk phase change temperature, ∆c = cl − cs the change in specific heat from
liquid to solid, σ the surface tension and κ the mean curvature. Note, it is assumed
that the ambient pressure variation is small, so a term related to pressure effects on the
temperature has been neglected. Figure 1 compares results for the generalised Gibbs-
Thomson relation against experiment for gold nanoparticles between 2 and 12 nm,
see [38].
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FIGURE 1. Variation of the melt temperature of gold nanoparticles

An appropriate non-dimensional mathematical model for the melting of a spheri-
cally symmetric particle is given by

(8)
∂T
∂ t

=
1
r2

∂
∂ r

(
r2 ∂T

∂ r

)
,

∂θ
∂ t

=
k
c

1
r2

∂
∂ r

(
r2 ∂θ

∂ r

)
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6 MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID

where T,θ represent the temperature in the liquid and solid respectively. The boundary
conditions are T (1, t) = 1 , T (R, t) = θ(R, t)= Tm, θr(0, t)= 0 and the Stefan condition

(9) [β +(1− c)Tm]
dR
dt

= k
∂θ
∂ r

− ∂T
∂ r

∣∣∣∣
r=R

.

The nondimensional melting temperature Tm is determined from

(10) 0 = β
(

Tm +
Γ
R

)
+

(1− c)
δT

[(
Tm +

1
δT

)
ln(Tm δT +1)−Tm

]
.

The dimensionless parameters above are defined by

αl = kl/ρlcl c = cs/cl k = ks/kl

β = Lm/cl∆T δT = ∆T/T ∗
m Γ = 2σslT ∗

m/R0ρlLm∆T.
For a temperature increase of ∆T = 10K we have β ≈ 8, 40, 12 for water, gold and

lead, respectively. Obviously, the smaller the increase ∆T the larger the value of β .
Due to the small volume of the nanoparticles the energy required to melt them is also
small: any increase above the melting temperature, ∆T , on the nanoparticle surface is
enough to almost instantaneously melt it. Hence, working in a large Stefan number
regime, where β ≫ 1, is a sensible assumption. Note, small β indicates a fast melting
process as the temperature applied at the nanoparticle surface, TH , is much greater
than the melting temperature, Tm, large β implies a slower process as TH is closer to
Tm (although given that the time-scales are on the order of pico seconds slow and fast
are relative terms). This suggests a link between β and the time-scale, hence we re-
scale time as t = βτ and look for solutions of the form T = T0 +T1/β + · · · . In the
liquid we find

O(1) : 0 =
1
r2

∂
∂ r

(
r2 ∂T0

∂ r

)
, T0(1,τ) = 1, T0(R,τ) = Tm(11)

O(1/β ) :
∂T0

∂τ
=

1
r2

∂
∂ r

(
r2 ∂T1

∂ r

)
, T1(1,τ) = 0, T1(R,τ) = 0(12)

with respective solutions

T0 = 1+(Tm −1)
R
r

(
1− r
1−R

)
(13)

T1 = µ1

{[
(3− r)r− 2

r

]
− R

r

(
1− r
1−R

)[
(3−R)R− 2

R

]}
dR
dτ

(14)

where

(15) µ1 =

 βΓ

R
[
β + (1−c)

δT ln(TmδT +1)
] + (Tm −1)

(1−R)

 .

In the solid

(16) θ0 = Tm, θ1 =−µ2(R2 − r2)
dR
dτ
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MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID 7

where

(17) µ2 =
c

6k
βΓ

R2
[
β + (1−c)

δT ln(TmδT +1)
] .

The Stefan condition is

(18)
dR
dτ

=
(Tm −1)
R(1−R)

[
1+

1
β

(
(1− c)Tm −2µ1

(1−R)2

R
−2kµ2R

)]−1

and this is coupled to the differentiated form of the Gibbs-Thomson equation

(19)
dTm

dτ
=

Γ

R2
[
+ (1−c)

βδT ln(TmδT +1)
] dR

dτ
.

These equations are subject to R(0) = 1 and Tm(0) = Tm(1) (this value is determined
by solving (10) with R = 1). Hence, the original system, consisting of heat equations
in the solid and liquid defined over a changing domain which is specified by the Stefan
condition and coupled to an equation describing the phase change temperature has now
been reduced to solving two first order ODEs.
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FIGURE 2. Typical result for non-dimensional position of melt front
R(t) (to convert to dimensional form multiply R by the original particle
radius of 10nm and t by the time-scale 2.7ps)

In Figure 2 we show the evolution of the melt front, R(t), with time. The dashed lines
are the approximate solution, the solid lines come from a numerical solution of the full
system. The three sets of curves represent three solution forms, the curves labelled
(i) represent the model using the generalised Gibbs-Thomson relation, curves (ii) take
cs = cl in Gibbs-Thomson but not the energy balance (this is the form used in [30])
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8 MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID

and curves (iii) are the standard model where cs = cl and Tm = T ∗
m . It is clear that the

standard model will overpredict the melt time by a significant amount (usually at least
by an order of magnitude). Curves (i) and (ii) demonstrate how, as the solid radius
decreases, the gradient of the curve increases and tends to infinity. So, in the final
stages of melting it is predicted that the particle will suddenly disappear. This is the
‘abrupt melting’ phenomena observed by [7]. Figure 3 shows the temperature profile
within the liquid and solid regions as the particle melts. The dotted line indicates how
the melt temperature decreases with time, the dashed line is the temperature in the
solid phase, the solid line the temperature in the liquid.
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FIGURE 3. Temperature profiles within a melting nanoparticle

4. THERMAL CONDUCTIVITY OF NANOFLUIDS

There exists a vast literature on the enhanced thermal properties of nanofluids when
compared to their base fluids (a nanofluid fluid is a fluid containing nanoparticles [9]).
The often remarkable enhancement then suggests nanofluids as the solution for heat
removal in many modern electronic devices. However there are discrepancies and
much debate over experimental findings and so far no satisfactory mathematical model
has been proposed to describe the thermal response of a nanofluid [31, 32].

The classical analysis of heat conduction for solid-in-liquid suspensions is that of
Maxwell, based on effective medium theory. This leads to an expression for the effec-
tive thermal conductivity

(20)
ke

kl
=

[
2kl + kp +2ϕ(kp − kl)

2kl + kp −ϕ(kp − kl)

]
,
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MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID 9

where ke,kp,kl represent the effective, particle and liquid thermal conductivity and ϕ
is the particle volume fraction. There are obvious problems with the Maxwell model.
Firstly, it is based on analysing the heat flow in the material surrounding an equiva-
lent nanofluid and the heat flow around a particle, as opposed to analysing the actual
nanofluid or particle behaviour. The analysis is carried out over an infinite region [9].
Hence the result can only be applied to a highly disperse fluid where the particles are so
far apart that an energy change in one has a negligible effect on any other particle. This
approach will clearly lead to problems as the particle concentration increases. Further,
the Maxwell model is based on a steady-state solution but in general one would wish
to analyse how a nanofluid responds in a time-dependent situation.

Keblinski et al [41] compared the data from various groups working with nanofluids
and found that for most of the data ke ≈ (1+Ckϕ)kl with Ck ≈ 5 whilst the linearised
Maxwell model predicts Ck ≈ 3. In an attempt to improve the fit between theory and
experiment various researchers have extended or modified Maxwell’s model to account
for nanolayers, particle clustering, nanoconvection and Brownian motion. Examples
of these include the work of Koo and Kleinstreuer [33] who alter the Maxwell model
by adding on a term to account for Brownian motion. Prasher et al [32] multiply the
Maxwell result to include a Brownian factor. Yu et al [34] use a nanolayer (a thin
layer of ordered liquid molecules surrounding the particle) with thickness 2nm and a
conductivity greater than ten times that of the base fluid. In [9] a comprehensive list
of variations to Maxwell’s model and similar theories are described. In each case the
introduction of new effects and new parameters permits better agreement with certain
experiments.

Working with the diffusion time-scale in the liquid an appropriate non-dimensional
model for heat flow through a spherically symmetric liquid-particle system may be
written

∂T
∂ t

=
α
r2

∂
∂ r

(
r2 ∂T

∂ r

)
r ∈ [0,rp](21)

∂θ
∂ t

=
1
r2

∂
∂ r

(
r2 ∂θ

∂ r

)
r ∈ [rp,1] ,(22)

where α = αp/αl is the ratio of thermal diffusivities and rp the particle radius. Impos-
ing continuity of temperature and heat flux at the fluid-particle interface and a fixed
boundary temperature greater than the initial temperature appropriate boundary condi-
tions are

θ(r,0) = T (r,0) = 0 θ(1, t) = 1 θ(rp, t) = T (rp, t) = Tp(t)(23)

∂θ
∂ r

∣∣∣∣
r=rp

= k
∂T
∂ r

∣∣∣∣
r=rp

∂T
∂ r

∣∣∣∣
r=0

= 0 ,(24)

where k = kp/kl .
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10 MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID

The goal of this exercise is to define an ‘equivalent fluid’ with diffusivity αe and
from this infer the effective thermal conductivity ke. This requires solving the system

∂θe

∂ t
=

αe

r2
∂
∂ r

(
r2 ∂θe

∂ r

)
θe(1, t) = 1

∂θe

∂ r

∣∣∣∣
r=0

= 0 .(25)

This system is simple to solve, with a solution in terms of Bessel’s functions. In
particular the temperature at the centre is given by

θe(0, t) = θs(t) = 1+
N

∑
n=1

2(−1)ne−n2π2αet .(26)

The system involving a particle is more difficult to deal with and so we rely on
approximate solutions. First, note that to increase the thermal conductivity of a fluid
nanoparticles are introduced with a much higher diffusivity than the base fluid. Typ-
ical values for copper and Al2O3 in water or ethylene-glycol solutions range from
60–1200 so α ≫ 1 and similarly k ≫ 1. Effectively this means that heat is transferred
much quicker through the particle than the fluid and we may set T (r, t) ≈ Tp(t). The
thermal problem in the fluid may be reduced to a Cartesian system by setting θ = u/r
and then the problem is identical to one treated by an accurate version of the Heat
Balance Integral Method (HBIM) developed in [36, 37]. The HBIM permits simple
polynomial approximations to the temperature in the fluid and particle and, more im-
portantly, clearly shows the effect of the problem parameters. Integrating the heat
equation over the domain leads to an ODE for the temperature Tp which then deter-
mines

Tp = 1− e−Λ(t−t1) ,(27)

where Λ = nλ/cT , λ = 1/(1− rp)
2 and cT = (1+ rp)/2− 1/(n+ 1). The time t1 is

when the temperature of the particle first rises, noticeably, above the initial tempera-
ture. The value n = 2.233 is determined in [36, 37] by minimising the least-squares
error when the approximate solution is substituted into the heat equation.

Applying the HBIM to the equivalent fluid system leads to an expression for the
centre temperature

Tc = 1− e−Λ′(t−t ′1)(28)

where Λ′ = nαe/cT 0 and cT 0 = (n−1)/(2(n+1)). We may verify the accuracy of the
HBIM method by comparing the temperature predicted by equation (28) with that of
(26). The result is shown in Figure 4. The HBIM solution predicts Tc = 0 until some
time t ′1 > 0 and then an exponential increase to the asymptote (which is scaled to 1).
This follows the actual temperature θs(t) reasonably well.

Now the HBIM solution has been shown to be sufficiently accurate we may find an
equivalent diffusivity by some form of matching of the HBIM solution with a particle
and that for the equivalent fluid. In this case we take the simple option of equating the
decay rates in the expressions for Tp and Tc (since this forces the temperature profiles
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FIGURE 4. Comparison of Tc(t) and θs(t)

to be similar). This is equivalent to setting Λ = Λ′ which gives

αe =
αl

(1− rp)2
n−1

2(n+1)

[
1+ rp

2
− 1

n+1

]−1

.(29)

The radius rp is non-dimensional, scaled with the fluid radius R. In general these types
of relation are given in terms of the volume fraction ϕ where rp = ϕ 1/3,

αe =
αl

(1−ϕ 1/3)2

n−1
2(n+1)

[
1+ϕ 1/3

2
− 1

n+1

]−1

.(30)

Hence the thermal diffusivity of the equivalent fluid depends only on the liquid dif-
fusivity and volume fraction (the value of n = 2.233 is fixed). The composition of
the nanoparticle does not affect αe. Noting that αe = ke/(ρc)e and (ρc)e = ϕρpcp +
(1−ϕ)ρlcl , see [43], we may write the effective thermal conductivity as

ke

kl
=

[
(1−ϕ)+ϕ ρpcp

ρlcl

]
(n−1)

(1−ϕ 1/3)2
[
(1+ϕ 1/3)(n+1)−2

](31)

According to this formula, the equivalent particle conductivity is independent of the
particle conductivity (this has been observed experimentally). The particle material
enters through the density and specific heat (ρc)p, but since the ratio ρpcp/(ρlcl) is
order 1 and ϕ is small this is a weak dependence. Hence the effective conductivity is
primarily a function of the liquid conductivity kl and volume fraction ϕ .

The true test of a theory comes through comparison with experiment. In Figure 5 we
compare the present prediction for ke with that of Maxwell and a number of data sets
taken from the literature for an Al2O3-water nanofluid, see [42]. As expected, there is
quite a spread in the data and so we cannot hope to match all points. The prediction
of the current theory, given by equation (31), is shown as the solid line, the Maxwell
result of equation (20) is the dashed line. For very low volume fractions the Maxwell
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FIGURE 5. Conductivity ratio ke/kl for Al2O3-water nanofluid with
kl = 0.58W/mK: equation (31) (solid line); Maxwell model equation
(20) (dashed line) and experimental data.

curve lies above the prediction of (31) and captures the data better, but for ϕ > 0.008
(i.e. a volume fraction around 0.8% the present model rapidly increases above Maxwell
and, more importantly, passes between a large amount of the experimental data. It is
clear that the present model provides a much better approximation to the majority of
experimental data when compared to the basic Maxwell model for volume fractions
approximately greater than 1%.

5. CONCLUSION

In this paper we have briefly described three problems of current interest to the
nano community. Although clearly we are working at the limit of continuum theory in
each case the continuum models show good agreement with experimental results and
provide valuable insight. Conversely, the nanoscale modelling can also provide valu-
able insight for macroscale problems. There is currently no theory for calculating slip
length when a liquid moves over a solid surface. The study of flow in carbon nanotubes
led to an expression for the slip length in terms of the depletion layer thickness and
viscosity of the available gas. The study of nanofluids led to an expression for thermal
conductivity for solid in liquid suspensions derived in a distinct way to the classical
Maxwell model and valid for higher particle concentrations.

REFERENCES

[1] P. Abragall and N-T Nguyen. Nanofluidics. Artech House 2009.
[2] N-T. Nguyen and S.T. Werely. Fundamentals and applications of microfluidics. 2nd Edition,

Artech House 2006.
[3] G. Guisbiers et al. J. Phys. Chem. C, 112:4097–4103, 2008.
[4] K.P. Travis et al. Phys. Rev. E, 55(4):4288–4295, 1997.
[5] C. Cottin-Bizonne et al. Rev. Lett., 94:056102, 2005.



C
R

M
Pr

ep
ri

nt
Se

ri
es

nu
m

be
r1

15
2

MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID 13

[6] J.A. Thomas et al. Int. J. Therm. Sci., 49:281289, 2010.
[7] R. Kofman et al. Euro. Phys. J. D., 9(1-4), 441-444, 1999.
[8] C.-L. Kuo and P. Clancy. J. Phys. Chem. B, 109, 13743–13754, 2005.
[9] S.K. Das et al. Nanofluids: Science and Technology, Wiley 2007.

[10] J.K. Holt et al. Science 312:1034 2006, doi:10.1126/science.1126298.
[11] M. Majumder et al. Nat. Biotechnol., 438:44 2005.
[12] M. Whitby et al. Nanoletters, 8(9):2632–2637, 2008.
[13] F.M. White Viscous fluid flow. McGraw-Hill, New York 1991.
[14] J.A. Thomas and A.J.H. McGaughey. Nano Lett., 8(9):2788-2793, 2008.
[15] H. Verweij et al. Small 3(12):1996-2004. doi:10.1002/smll.200700368.
[16] A. Poynor Phy. Rev. Lett., 97:266101, 2006.
[17] C. Cottin-Bizonne et al. Phys. Rev. Lett., 94:056102, 2005.
[18] J.C.T. Eijkel and A. van den Berg. Microfluid Nanofluid, 1:249-267, 2005 doi: 10.1007/s10404-

004-0012-9
[19] C. Neto et al. Rep. Prog. Phys., 68:28592897, 2005.
[20] M.T. Matthews and J.M. Hill. Int. J. Nanotechnol., 5(2/3):218-242, 2008.
[21] S. Joseph and N.R. Aluru. Nano Lett., 8(2):452-458, 2008.
[22] C-H Choi et al. Phys Fluids 15(10):2897-2902, 2003.
[23] J-L. Barratand L. Bocquet. Faraday Discuss. 112:119-27, 1999.
[24] H. Ye et al. Nanoscale Research Letters., 6:87, 2011.
[25] S. Karmakar et al. J. Phys.: Conf. Ser., 292:012002, 2011, doi:10.1088/1742-6596/292/1/012002.
[26] F. Ahmad et al. J. Nanopart. Res., 14:1038, 2012, DOI: 10.1007/s11051-012-1038-7.
[27] J.-H. Shim et al. Surf. Sci., 512:262–268, 2002.
[28] P. Bergese et al. J. Phys. Chem. B, 108:15488–15493, 2004.
[29] S. Rana et al. Adv. Drug. Delivery Rev., 64:200–216, 2012.
[30] S. W McCue et al. Proc. Roy. Soc. A, 464(2096):2055–2076, 2008.
[31] J. Buongiorno et al. J. Appl. Phys., 106:094312, 2009.
[32] R. Prasher et al. Phys. Rev. Lett., 94:025901, 2005.
[33] J. Koo and C. Kleinstreuer.J. Nanopart. Res., 6:577-588, 2004.
[34] W. Yu and S.U.S. Choi. J. Nanopart. Res. 5:167–171, 2003.
[35] T.G. Myers Microfluid. Nanofluid. 2010. DOI: 10.1007/s10404-010-0752-7.
[36] T.G. Myers. Int. Comm. Heat Mass Trans., 36(2):143–147, 2009.

DOI:10.1016/j.icheatmasstransfer. 2008.10.013.
[37] T.G. Myers. Int. J. Heat Mass Trans., 2010.
[38] F. Font et al. Submitted to J. Nanopar Res., 2013.
[39] Ph. Buffat et al. Phys Rev A, 13(6):2287–2298, 1976.
[40] X. Liu et al Mat. Chem. Phys., 10: 1–4, 2007.
[41] P. Keblinski et al. J. Nanopart Res., 10:1089-1097, 2008.
[42] T.G. Myers et al. Sumitted to J. Nanopar Res., 2013.
[43] S.Q. Zhou and N. Rui. Appl. Phys. Lett., 92:093123, 2008.

T.G. MYERS
CENTRE DE RECERCA MATEMÀTICA
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