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Author(s): G. Farré, J. Sardanyés, A. Guillamon and E.

Fontich.
Volume, pages: 1-17, DOI:[--]



Preprint núm. 1229
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Abstract. Establishing the conditions allowing for the stable coexistence in
hypercycles has been a subject of intensive research in the past decades. De-
terministic, time-continuous models have indicated that, under appropriate
parameter values, hypercycles are bistable systems, having two asymptoti-
cally stable attractors governing coexistence and extinction of all hypercycle
members. The nature of the coexistence attractor is largely determined by
the size of the hypercycle. For instance, for 2-member hypercycles the coex-
istence attractor is a stable node. For larger dimensions more complex dy-
namics appear. Numerical results on so-called elementary hypercycles with
n = 3 and n = 4 species revealed, respectively, coexistence via strongly- and
weakly-damped oscillations. Stability conditions for these cases have been
provided by linear stability and Lyapunov functions. Typically, linear stabil-
ity analysis of 4-member hypercycles indicates two purely imaginary eigen-
values and two negative real eigenvalues. For this case, stability can not be
fully characterized linearizing near the fixed point. In this letter we deter-
mine the stability of a non-elementary 4-member hypercycle which consid-
ers exponential and hyperbolic replication terms under mutation giving place
to an error tail. Since Lyapunov functions are not available for this case,
we use the center manifold theory to rigorously show that the system has a
stable coexistence fixed point. Our results also show that this fixed point
can not undergo a Hopf bifurcation, as supported by numerical simulations
previously reported.

1. Introduction

The stability of hypercycles is a very important subject of research within the-
origin-of-life framework. Hypercycles are catalytic sets of macromolecules that
can catalyze their own replication or the replication of other species of the net-
work, which usually has cyclic architecture [5]. Catalytic sets have been a subject
of study in different fields. For instance, hypercycles have been largely investi-
gated in the framework of prebiotic evolution [2, 5, 11, 18], suggested of being
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responsible for one the major transitions in evolution: the transition from quasis-
pecies to hypercycles as a possible way to surpass the information crisis at early
stages of biological evolution [4, 5, 18]. Hypercycle equations have been also
used to study the dynamics of other complex systems. For instance, ecological
dynamical systems [8, 13, 18, 19].

The conditions allowing the asymptotic persistence of hypercycles have been in-
vestigated during the past decades. The nature of the coexistence attractor for
small hypercycles is well known. For instance, when n = 2, the coexistence at-
tractor is a stable node [5, 12, 14, 15] since linearization near these equilibria
revealed two negative eigenvalues. For larger hypercycles the nature of the co-
existence attractor slightly changes. Specifically, the stability for the so-called
elementary hypercycle in [5] has been determined by using Lyapunov functions.
Together with these results, further numerical simulations have revealed that
hypercycles with n = 3 and n = 4 have, respectively, a coexistence attrac-
tor which is achieved via fastly- and weakly-damped oscillations [5, 16]. For
the n = 4 dimension, linear stability analysis shows two imaginary eigenval-
ues with zero real part and two negative eigenvalues. This particular condition
does not allow to characterize the stability of this putative attractor. As men-
tioned, in the elementary hypercycle studied in Ref. [5] the stability for n = 4
was determined using a Lyapunov function. For the system explored in this
letter, which considers the hypercycle with the error tail, it is not clear at all
how to find a Lyapunov function. However, a rigorous stability analysis can be
performed using the center manifold theory.

In this letter we perform this analysis showing that the dynamics restricted to
the center manifold corresponding to the two imaginary eigenvalues is a sta-
ble (degenerate) focus of order two, which implies that this equilibrium point
is certainly an attractor. Our study also shows that the stable fixed point
can not undergo a Hopf bifurcation, thus no periodic orbits can born from
this equilibrium point.

2. Mathematical model

The hypercycle model we analyze describes the time evolution of the relative
concentration of n molecular species with the so-called error tail [2, 17]. If we
denote by {I1, . . . , In} the hypercycle species and Ie the species forming the error
tail, the differential equations describing their concentrations x = (x1, . . . , xn)
and xe are

(1) ẋi = xi(AiQ+Kixi−1Q− Φ̂(x, xe)),

for i = 1, . . . , n, and
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ẋe = xe(Ae − Φ(x, xe)) + (1−Q)
n∑
i=1

xi(Ai +Kixi−1),

where x0 ≡ xn, Ki, Ai > 0, 1 ≤ i ≤ n, Ae > 0, Q ∈ (0, 1) and

Φ̂(x, xe) =
n∑
i=1

xi(Ai +Kixi−1) + Aexe.

System (1) describes a hypercycle model of dimension n with both Malthusian
and heterocatalytic (nonlinear) reproduction together with mutation. Both con-
stants Ai and Ki denote the Malthusian and heterocatalytic replication rates,
respectively. The parameter Q is the replication quality factor or copying fidelity.
Finally, Φ̂(x, xe) is the dilution flow that keeps the total population constant; it
also introduces competition between all the replicators forming the hypercycle
and the error tail.

The hyperplane H = {(x, xe) ∈ Rn+1|
∑n

i=1 xi + xe = 1} is invariant by the flow.
Accordingly, we will restrict our study to the solutions in H. Moreover, we can
forget about the error tail and omit the term xe because it is given by xe =
1−

∑n
i=1 xi. Thus we are let to consider the differential equation

(2) ẋi = fi(x) = xi(AiQ+Kixi−1Q− Φ(x)),

1 ≤ i ≤ n, where Φ(x) =
∑n

i=1 xi(Ai +Kixi−1) + Ae(1 −
∑n

i=1 xi) and x =
(x1, . . . , xn).

We will restrict to the biological meaningful region, namely the set

S =

{
(x1, . . . , xn) | 0 ≤ xi ≤ 1,

n∑
i=1

xi ≤ 1

}
,

which is positively invariant by the evolution of the hypercyclel. That is, the flow
will never come out from S and it will exist for any positive time. Additionally,
we will assume that Ki = 1 to simplify the model.

3. The symmetric hypercycle

We will take Ai = Ae = a, ∀i ∈ {1, . . . , n}, for some a > 0. We refer to this
case as the symmetric hypercycle, which assumes that all hypercycle elements are
selectively neutral. The following proposition gives the equilibrium points in any
dimension. The proof is an elementary computation which can be found in [10].
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Proposition 1. For the values of (a,Q) such that Q2/(1 − Q) ≥ 4na, Eq. (2)

has three fixed points in S: x0 = ~0, and x∗+, x∗−, whose coordinates are

x∗±,i =
Q±

√
Q2 − 4na(1−Q)

2n
,

for all i ∈ {1, . . . , n}. When Q2/(1 − Q) < 4na, the only fixed point of Eq. (2)
in S is the origin.

The coordinates of the non trivial equilibrium points are actually the two solutions

of nx2i −Qxi +a(1−Q) = 0. Notice that for Q = QSS := 2
(√

na(1 + na)− na
)

a saddle-node bifurcation occurs and the two equilibria x∗+ and x∗− appear for
Q > QSS.

(a) n = 3 (b) n = 4 (c) n = 5

Figure 1. Eigenvalues λ+j for 0 < j < n on the circle of radius
k = Qx∗+,1 in C. The case n = 4, analyzed in this letter, displays
two eigenvalues with negative real part and a couple of complex
eigenvalues with zero real part (λ+0 is not displayed).

3.1. Stability of the equilibrium points. In this section we will classify the
character of the fixed points. We first note that the right-hand side of (2) for the
symmetric case can be written as

fi(x) = xiFi(x), i ∈ {1, . . . , n} ,

where Fi(x) = a(Q− 1) +Qxi−1 −
∑n

j=1 xjxj−1.

Since
∂fi
∂xj

(x) = δijFi(x) + xi
∂Fi
∂xj

(x),
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where δij is the Kronecker delta function and

∂Fi
∂xj

(x) =

{
Q− xj+1 − xj−1, j = i− 1,

−xj+1 − xj−1, j 6= i− 1,

it turns out that the components of the Jacobian of f are

(3)
∂fi
∂xj

(x) =


xi(Q− xj+1 − xj−1), j = i− 1,

xi(−xj+1 − xj−1), j /∈ {i− 1, i} ,

Fi(x) + xi(−xi+1 − xi−1), j = i.

Substitution of xi = 0, for all i = 1, . . . , n, into (3) leads to Df(~0) =

diag(a(Q− 1), . . . , a(Q− 1)). Therefore the eigenvalues of Df(~0) are all equal to

a(Q−1) < 0 so x∗ = ~0 is an attracting fixed point independently of the parameter
values (a,Q), a > 0, Q ∈ (0, 1). In the same way we will analyze the stability
of the fixed points x∗+ and x∗− given in Proposition 1. Using again equation (3),
together with the fact that all the components are equal, we obtain the following
expression for the entries of the Jacobian matrix

∂fi
∂xj

(x∗±) =


x∗±,1(Q− 2x∗±,1), j = i− 1,

−2(x∗±,1)
2, j /∈ {i− 1, i} ,

Fi(x
∗
±,1)− 2(x∗±,1)

2, j = i.

Notice that F (x∗±,1) = a(Q− 1) +Qx∗±,1 − n(x∗±,1)
2 = 0, because the coordinates

x∗±,1 are exactly the solutions of nx2i −Qxi+a(1−Q) = 0. Therefore if we denote

b± := −2(x∗±,1)
2 and d± := x∗±,1(Q− 2x∗±,1),

Df(x∗±) =


b± b± . . . b± d±

d±
. . . . . . . . . b±

b±
. . . . . . . . .

...
...

. . . . . . . . . b±
b± . . . b± d± b±

 ,

which is a circulant matrix. There are explicit formulas to get the eigenvalues and
the eigenvectors for circulant matrices, see e.g., [7]. In our case, these formulas
give

λ±j =
n−2∑
k=0

−2(x∗±,1)
2 exp (2πi jk/n)

+ x∗±,1(Q− 2x∗±,1) exp (2πi j(n− 1)/n),(4)
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where i2 = −1 and j ∈ {0, . . . , n− 1}. If j 6= 0, using that the sum of the
geometric progression

∑n−1
k=0 exp (2πi jk/n) is zero, we can simplify (4) to obtain:

λ±j = x∗±,1Q exp (2πi j(n− 1)/n), j ∈ {1, . . . , n− 1} .

For j = 0 we get:

λ±0 = x∗±,1(Q− 2x∗±,1)− 2(n− 1)(x∗±,1)
2

= Qx∗±,1 − 2n(x∗±,1)
2 = −Qx∗±,1 + 2a(1−Q),

using that a(Q− 1) +Qx∗±,1 − n(x∗±,1)
2 = 0.

Observe that for x∗− we have that λ−0 > 0, and so x∗− is unstable indepen-
dently of the character of other eigenvalues. On the other hand, since λ+0 =
x∗+,1(Q − 2nx∗+,1) and x∗+,1 > Q/(2n) > 0, then λ+0 < 0. Thus, to determine

the stability character of x∗+ we need to study the sign of the real part of λ+j for
0 < j ≤ n. As it is illustrated in Figure 1, we have that for n ≤ 3 all these eigen-
values have negative real part and for n ≥ 5 we will always have eigenvalues with
positive real part. Therefore for n ≤ 3 the equilibrium point x∗+ is an attractor
and for n ≥ 5 it is unstable. It remains the discussion in the case n = 4, for
which x∗+ is non hyperbolic.

3.2. Stability of x∗
+ when n = 4. In order to simplify the notation, we intro-

duce the parameters k := Qx∗+,1 and c := k− 2a(1−Q). Notice that both k and
c are positive. Then, for n = 4, the eigenvalues of Df(x∗±) read as

λ+0 = −c, λ+1 = ke2πi
3
4 = −ik,

λ+2 = ke2πi
3
2 = −k, λ+3 = ke2πi

9
4 = ik,

and their corresponding eigenvectors are:

v0 = (1, 1, 1, 1)> , v1 = (1, i,−1,−i)> ,

v2 = (1,−1, 1,−1)> , v3 = (1,−i,−1, i)> .

The invariant subspace generated by v1 and v3 (thought as a vector space over
C) is also generated by w1 := 1

2
(v1 + v3), w2 := i

2
(v3 − v1) and moreover,

Df(x∗±)w1 = − i
2
kv1 +

i

2
kv3 = kw2,

Df(x∗±)w2 = −1

2
kv1 −

1

2
kv3 = −kw1.

This linear study is not sufficient to draw conclusions about the stability of the
equilibrium x∗+,1. At this point, we know that two eigenvalues are negative and
the other two have zero real part. Moreover, in this situation, the point x∗+ has
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a center manifold which is tangent to the linear space generated by v1 and v3. If
we are able to prove that the equilibrium point of the system restricted to the
center manifold is asymptotically stable, then by Theorem 2 in [3, Ch. 1] we will
prove that the equilibrium of the four dimensional system (2) is asymptotically
stable. Let us then compute the center manifold and study the restriction of (2)
on it.

To reduce the vector field to the central manifold it is convenient to perform a
translation of the point x∗+, say z = x − x∗+ to the origin followed by a linear
change z = C y, where C is the matrix whose columns are the vectors w1, w2, v2
and v0, that is,

C =


1 0 1 1
0 1 −1 1
−1 0 1 1

0 −1 −1 1

 ,

In the new set of variables y = (y1, y2, y3, y4), the vector field is expressed as

(5) ẏ = C−1f
(
C y + x∗+

)
=: G(y),

which is topologically conjugate to (2) since translations and invertible linear
maps are diffeomorphisms.

Performing the whole calculation and using the fact that a(Q − 1) + Qx∗+,1 −
4(x∗+,1)

2 = 0, we can express G(y) = G1(y) +G2(y) +G3(y), where the subindex
stands for the degree of the polynomial in y and

G1(y) =


−k y2
k y1
−k y3
−c y4

 , G3(y) = 4(y23 − y24)


y1
y2
y3
y4

 ,

G2(y) =


Q(y1(y4 − y3)− y2(y3 + y4))− 8x∗+,1y1y4

Q(y1(y4 − y3) + y2(y3 + y4))− 8x∗+,1y2y4

−(Qy1y2 + 8x∗+,1y3y4)

(−Q+ 4x∗+)y23 + (Q− 12x∗+,1)y
2
4

 .

Notice that now the linear part of the system corresponds to the expected one.

3.3. Reduction to the center manifold. The resulting system (5) is poly-
nomial of degree 3 and therefore a C∞ function. Thus by the center manifold
theorem [3] we know that ~0 has a center manifold W c = graph(h) tangent to the
vector space generated by the eigenvectors corresponding to the eigenvalues with
zero real part, that is, the plane generated by y1 and y2. The center manifold is
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locally parameterized by a Cr function h with r as large as we want. We rewrite
(5) in the form

(6)

{
ξ̇ = Aξ + u(ξ, η),

η̇ = B η + v(ξ, η),

with ξ = (y1, y2), η = (y3, y4),

A =

(
0 −k
k 0

)
and B =

(
−k 0
0 −c

)
,

and u(ξ, η) and v(ξ, η) represent the nonlinear terms of the system.

In this notation, W c is represented by η = h(ξ). Then, the condition of graph(h)

being invariant by (6) is η̇ = Dh(ξ)ξ̇, that is,

B η + v(ξ, η) = Dh(ξ) (Aξ + u(ξ, η)) .

Substituting η = h(ξ) into this equation gives

(7) B h(ξ) + v(ξ, h(ξ)) = Dh(ξ) (Aξ + u(ξ, h(ξ))) .

From now on, we rename variables y1 and y2 by x and y, respectively, so that
ξ = (x, y). For our purposes it is enough to know the quadratic terms of the
function h; accordingly, we write

(8) h(x, y) =

(
a20x

2 + a11xy + a02y
2

b20x
2 + b11xy + b02y

2

)
+O(3).

Substituting (8) into (7), we have(
−ka20x2 − ka02y2 − (ka11 +Q)xy

−c(b20x2 + b02y
2 + b11xy)

)
= k

(
a11x

2 − a11y2 + 2(a02 − a20)xy
b11x

2 − b11y2 + 2(b02 − b20)xy

)
,

from which we obtain

a11 = −
Q

5k
, a20 =

Q

5k
, a02 = −

Q

5k
,

b11 = 0, b20 = 0, b02 = 0.

Thus, our function h will be

h(x, y) =

 Q

5k
(x2 − xy − y2)

0

+O(3).
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Now, we can write the system restricted to the center manifold, A

(
x
y

)
+

u(x, y, h(x, y)), which reads as

(9)


ẋ = −ky −

Q2

5k
(x3 − 2xy2 − y3) +O(4),

ẏ = kx−
Q2

5k
(x3 − 2x2y + y3) +O(4).

A first attempt to determine the stability of ~0 is to change to polar coordinates
(r, θ). The derivative of r is:

ṙ = r3
Q2

5k

[
sin3 θ (cos θ − sin θ)− cos3 θ (cos θ + sin θ) + 4 cos2 θ sin2 θ

]
.

We note that the sign of ṙ depends on θ, see Figure 2(upper), so it does not
provide a conclusive information concerning stability. However, the flow of the
vector field of system (9), see Figure 2(lower), shows evidence that the equilibrium
point is stable.

In order to prove the stability, we will look for the normal form of the system at
the origin, see [9, Ch. 3.3]. For this purpose it is convenient to write system (9)
in complex variables, z = x+ i y and z = x− i y:

(10) ż = ikz − (1 + 3 i)
Q2

20 k
z2z − (3 + i)

Q2

20 k
z3 +O(4),

and the equation for z, which is the complex conjugate of the one for z. In
these variables, the linear part is diagonal. An additional advantage of working
in these variables is that we only need to transform one equation because the
other remains its conjugate. Since the eigenvalues are ±ik, the resonant terms
for the equation (10) are zn+1zn, with n ≥ 1. The explicit calculations give that
the normal form of (10) is

(11) ż = ikz −
Q2 (1 + 3 i)

20k
z2z +O(5).

Alternatively, we can apply Theorem A in [6] to system (10), see [1, Ch. IX.2] for

a more classical reference, to conclude that ~0 is an attracting equilibrium point.
However, for this case we can proceed directly writing (11) in polar coordinates
by means of the change z = r eiθ, which leads to

ṙ = − Q2

20 k
r3 +O(5),

θ̇ = k − 3Q2

20 k
r2 +O(4).
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Figure 2. Radial derivative and phase portrait for system (9).
(Upper) Plot of ṙ/r3 with respect to θ. (Lower) Flow for Eqs. (9)

around ~0 for a = 0.5, Q = 0.95. Grey arrows indicate the vector
field.

Notice that near the origin ṙ < 0 and θ̇ > 0, so it is clear that the origin is
asymptotically stable, and so it is for system (9) (recall that the stability of the
fixed points is preserved under locally topological conjugacies). Finally, as we
pointed out at the end of Section 3.1, using Theorem 2 in [3, Ch. 1] we reach the
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conclusion that the fixed point x∗+ in the original fourth dimensional system (2)
is an attractor.

The fact thar ṙ < 0 for all values of the (considered) parameters prevents the

birth of a periodic orbit from ~0 (which corresponds to x∗+ in the present variables),
which implies that no Hopf bifurcation can take place.

4. Discussion

In this letter we have conducted a stability analysis using the center manifold
theory for hypercycles with n = 4 species and an error tail formed by mutant
replicators. Previous works provided numerical evidences that the coexistence
in hypercycles was governed by a stable fixed point [5, 16]. Numerical simula-
tions indicated that such a fixed point can be achieved with different damped
oscillatory modes (i.e., fastly damped oscillations for n = 3 and weakly-damped
oscillations for n = 4) [5]. Moreover, for the so called elementary hypercycle
in [5] Lyapunov functions are known for these fixed points when n = 3 and n = 4
so they are asymptoticaly stable. Despite these previous results, and for other
types of hypercycles beyond the elementary ones, linear stability analysis around
the coexistence attractor for n = 4 gives two purely imaginary eigenvalues and
two other negative eigenvalues. Since Lyapunov functions for these cases are
not available, no direct conclusions about the stability of this fixed point can be
attained.

As mentioned above, we here explore the stability in the coexistence for a hyper-
cycle with four species in a slightly different model from the one analyzed in [5]. In
particular, it introduces another layer of complexity by considering that replica-
tors can synthesize neutral mutants, which ultimately act as parasites, since they
do not reciprocate the catalytic support to the replicators forming the catalytic
cycle. To determine the stability for this case we have performed a reduction to
the center manifold, showing that this fixed point is locally asymptotically stable,
in agreement with numerical results conducted for this type of hypercycle [2].

Our approach also indicates that a Hopf bifurcation giving place to a periodic
orbit underlying coexistence dynamics is not possible. In this sense, our approach
reinforces the results suggesting that the minimal hypercycle size for which peri-
odic orbits can exist is n > 4 species [5, 11]. Our analytical results thus comple-
ment previous studies on the stability of hypercycles with the so-called error tail
[2, 17].
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