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BOUNDARY LAYER ANALYSIS AND HEAT TRANSFER OF A
NANOFLUID

M.M. MACDEVETTE, T.G. MYERS, B. WETTON

Abstract. A theoretical model for nanofluid flow, including Brownian mo-
tion and thermophoresis, is developed and analysed. Standard boundary layer
theory is used to evaluate the heat transfer coefficient near a flat surface. The
model is almost identical to previous models for nanofluid flow which have
predicted an increase in the heat transfer with increasing particle concentra-
tion. In contrast our work shows a marked decrease indicating that under the
assumptions of the model (and similar ones) nanofluids do not enhance heat
transfer. It is proposed that the discrepancy between our results and previous
ones is due to a loose definition of the heat transfer coefficient and various ad
hoc assumptions.

1. Introduction

There exists a vast literature regarding the behaviour and applications of
nanofluids. In particular the often remarkable experimental results concerning
their heat transfer properties has seen them proposed as a front runner in the race
to cool modern high performance electronic equipment. However, there appears
no real consensus on whether nanofluids are indeed capable of removing large
amounts of heat. The plethora of experimental papers promoting their efficiency
and enhanced thermal conductivity, see [15, 16, 20] for example, appeared to have
been superseded by the benchmark study [6] carried out in over 30 organisations
throughout the world which suggested no anomalous enhancement of thermal
conductivity in the fluids tested. Indeed this should not be too surprising since
heat conduction occurs due to the transfer of kinetic energy from hot, rapidly vi-
brating atoms or molecules to their cooler, more slowly vibrating neighbours. In
solids the close, fixed arrangement of atoms means that conduction is more effi-
cient than in fluids, which have a larger distance between atoms [30]. A nanofluid
is made up of a small quantity of solid particles separated by a large amount of
fluid, thus ruling out the possibility of a great deal of intimate contact between
particles and hence suggesting no significant increase in thermal conductivity.
This conclusion is backed up by a small number of other theoretical and exper-
imental papers showing a degradation in thermal performance with increasing
volume fraction [15, 32, 40]. Yet despite this conclusion nanofluids and their heat
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transfer properties are still the subject of numerous articles, as discussed in the
recent review [20].
In addition to the lack of consensus on physical properties there is not yet an

accepted model for nanofluid flow. A number of models and physical mechanisms
(which may or may not be important) are described in [10]. In this paper we will
focus on a particular form of model, originally proposed by Buongiorno [5], which
includes thermophoresis and Brownian motion. In [5] an order of magnitude
study was carried out to dismiss a number of heat transfer mechanisms and show
that thermophoresis and Brownian motion play a significant role in the energy
transport of a flowing liquid. He then analysed a boundary layer flow model to
demonstrate an increase in heat transfer coefficient with particle volume fraction.
Subsequently various theoretical papers based on the same model have verified
this conclusion [17, 23, 25, 39]. Evans et al. [14] concluded that Brownian motion
has a negligible effect on the thermal conductivity. Savino and Paterna [34]
study buoyancy driven flow in a 1mm wide channel, they conclude that Brownian
motion and thermophoresis do affect the flow, but only over a time-scale of 27
hours, with the results most noticeable when gravity is 10−6 of its normal value.
The real goal in the development of nanofluids for cooling purposes is to enhance
the heat transfer and energy removal from a given surface. To understand this
requires knowledge of the flow and heat transfer coefficient (HTC) at the interface
between the fluid and the solid. This is the aim of the present paper. The HTC
is a surprisingly poorly defined quantity so, in the following section, we will
begin by examining the HTC and defining it in a way that reflects the correct
heat transfer from a surface. We will then develop a similar model to that of
[5, 34] via the energy and momentum equations defined in et al. [4, Ch. 3].
Standard boundary layer scaling will be applied to reduce the equations and, in
particular, demonstrate that Brownian motion and thermophoresis are negligible
with the boundary layer. We go on to show that, for the fluid-particle systems
investigated, the HTC decreases with increasing particle volume fraction. Finally,
given the number of papers that have reached the opposite solution from the same
equations we briefly discuss reasons for this discrepancy. Throughout the paper
we will work with a water-based nanofluid, although parameter values and some
results are also reported for Ethyene Glycol based nanofluids.

2. Calculating the heat transfer coefficient

The goal of this paper is to determine whether the addition of nanoparticles to a
base fluid can improve its ability to transfer heat. It is important to bear in mind
that this heat transfer depends not only on the heat removal from the surface
but also how well the fluid transports the energy away. For example, although
the nanofluid may have a higher heat capacity than the base fluid, this increased
ability to store thermal energy may be offset by the increase in fluid viscosity,
meaning energy transport with the flow is slower. Hence, in assessing the fluid’s
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heat removal ability we must consider the coupled problem of heat and fluid flow.
A second significant issue in analysing the heat removal is the concept of the heat
transfer coefficient. This is the parameter used by many authors to quantify the
heat transfer from a solid to a fluid. However, it is loosely defined and often does
not truly reflect the amount of heat transferred to the fluid. Consequently, before
we move on to the full thermal model we will begin with a discussion of the HTC.
When fluid flows over a solid surface the HTC represents the ratio of heat

input at the boundary to that transferred to the fluid. If q is the energy input at
the boundary per unit area and ∆T some temperature change in the fluid then
the HTC is typically defined by h = q/∆T . If the no-slip condition holds at the
solid-liquid boundary then the heat transfer there is by conduction, rather than
convection, and so Fourier’s law holds,

q = −k ∂T
∂y

∣∣∣∣
y=0

,(1)

where y = 0 denotes the position of the interface. Substituting for q leads to the
standard boundary condition

−k ∂T
∂y

∣∣∣∣
y=0

= h∆T .(2)

The variation in interpretation of this boundary condition comes through the
choice of ∆T . Perhaps the most common choice is ∆T = Tw − T∞, where Tw
is the temperature of the solid and T∞ that of the fluid in the far field [3, 10].
If the solid is heating the fluid, then it is well-known that Tw > Ty=0+ and so,
since h ∝ 1/∆T , the definition ∆T = Tw − T∞ will underestimate the HTC.
The mathematical literature tends to favour the choice ∆T = Ty=0+ −T∞, which
should be closer to representing the heat passed to the fluid. In fact the two
choices are often combined by choosing a mathematical description where the
fluid temperature Ty=0+ = Tw. In the nanofluid literature such choices may be
found in [5, 11, 32, 38] for example and there are also numerous examples in the
general heat transfer literature [4].
In fact, neither of the above options actually represents the energy increase in

the fluid. The problem being that the choice of ∆T is arbitrary and implicitly
assumes that the temperature (or energy) rise is linear in the fluid. To correctly
determine the energy rise requires knowledge of the velocity and temperature
profiles in the liquid. Say a fluid enters a system at x = 0 with some initial
temperature T∞ and a corresponding energy flux then a distance L downstream
the energy flux above the initial value is given by

Q =

∫ δT (L)

0

ρcu(T − T∞) dy ,(3)

where δT (L) is the thickness of the thermal boundary layer at x = L. In order
to write a HTC in a manner similar to previous definitions we may define an
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average temperature rise in the fluid Tav by

(Tav − T∞)

∫ δT

0

ρcu dy =

∫ δT

0

ρcu(T − T∞) dy .(4)

Note, Tav is referred to in [4] as the ‘cup’ average . The term cup average indicates
that if the flow to the edge of the boundary layer at x = L was collected in a
cup the temperature of this fluid would be given by Tav. The HTC that correctly
reflects the ratio of energy entering at the boundary to that transferred into the
fluid is

h =
q

Tav − T∞
=

q
∫ δT
0
ρcu dy∫ δT

0
ρcu(T − T∞) dy

.(5)

This is the definition we will use in the following work. Note, the HTC varies
with distance downstream (we have omitted writing x = L in all the integrals)
but will tend to an asymptote far downstream. A more detailed description of
the HTC and different ways to estimate it are given in [4].

3. Mathematical Modelling

Initially we will assume fluid properties, such as density, viscosity, thermal
conductivity and heat capacity, depend on the volume fraction ϕ. Hence we
write down a general model to account for this. The equations governing the
flow of a compressible nanofluid may be written as

∂ρnf
∂t

+∇ · (ρnfu) = 0,(6)

ρnf

[
∂u

∂t
+ u · ∇u

]
= −∇p−∇ · τ̃ + ρnfg,(7)

∂(χnfT )

∂t
+∇ · (χnfuT ) = ∇ · (knf∇T ) + µnfΦ,(8)

∂(ρnff)

∂t
+∇ · (ρnffu) = ∇ ·

[
ρnfDB∇f + ρnfDT

∇T
T

]
,(9)

where u is the velocity vector, T the temperature and g gravity. Subscripts bf ,
nf and np refer to the base fluid, nanofluid and nanoparticle, respectively. The
density and volumetric heat capacity are defined as

ρnf = ϕρnp + (1− ϕ)ρbf ,(10)

χnf = (ρc)nf = ϕρnpcnp + (1− ϕ)ρbfcbf .(11)

The variable f is the mass fraction of suspended nanoparticles and related to the
volume fraction by

f =
ϕρnp

(1− ϕ)ρbf
,(12)
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and the viscous dissipation is written as

Φ =
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
.(13)

The derivation of equations (6–8) follows along the lines described in Bird et al.
[4, Ch.3]. Although it should be noted that in the derivation of [4] the specific heat
capacity is assumed constant. In that case combining the energy and continuity
equations permits χ to be moved outside the derivative terms on the left hand
side of (8). However, since the specific heat of a nanofluid is a function of ϕ for
the moment we leave the equations in a slightly more general form.
Brownian diffusion is represented by the term involving DB in equation (9),

the DT term describes thermophoresis. The velocity induced by a temperature
gradient is typically written as

(14) v = −βµbf∇T/(ρbfT ),

where β = 0.26 · kbf/(2kbf + knp) is a proportionality factor between that of
the slip velocity due to thermophoresis and the temperature factor ∇T/T , see
[2, 7, 13, 26, 34]. The thermophoretic mass flux is then jT = ρnpϕv. This is often

written as jT = −ρnpD̃T∇T where D̃T = βµbfϕ/(ρbfT ) is termed the thermal
diffusion coefficient. However, this ‘diffusion coefficient’ has dimensions m2/(s
K). Consequently in equation (9) we follow the convention of [5] in defining a
dimensionally correct diffusion coefficient, DT = βµbfϕ/ρbf , which then requires
an additional factor 1/T in the final term of equation (9). Vigolo et al. [36] also
point out this discrepancy in definition and term D̃T as used by many previous
authors as a thermophoretic mobility rather than a diffusion coefficient. The two
diffusion coefficients, DB, DT , involve the variable temperature and mass fraction
respectively,

DB =
kBT

3πµbfdp
, DT =

βµbff

ρbf
,(15)

where kB is the Boltzmann constant and dp the particle diameter. Previous
studies have evaluated DB, DT using some reference temperature and volume
fraction, whilst allowing T, ϕ to vary everywhere else in the equations, see for
example [5, 34]. To clarify the dependence on temperature and volume fraction
in all subsequent equations we will use constants that do not involve T, ϕ, i.e.
CB = DB

T
, CT = DT

f
. Note, we write C’s instead of D’s to clarify that these are

not the standard diffusion coefficients (and indeed CB no longer has the correct
dimensions for this).
The components of the stress tensor are given in various co-ordinate systems

in [4, Ch. 3]. In Cartesian co-ordinates

τ̃xx = µnf

[
−2

∂u

∂x
+

2

3
∇ · u

]
, τ̃xy = τ̃xy = −µnf

(
∂u

∂y
+
∂v

∂x

)
,
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6 M.M. MACDEVETTE, T.G. MYERS, B. WETTON

τ̃xz = τ̃xz = −µnf

(
∂u

∂z
+
∂v

∂y

)
,(16)

and the components τ̃yy, τ̃zz follow the pattern of τ̃xx. The viscosity, µnf , may
vary considerably with the particle volume fraction. The Brinkman relation for
the viscosity significantly under predicts the true value for ϕ > 0.01. Khanafer
and Vafai [19] present a complex polynomial representation for µnf = µnf (ϕ, T )
and show good agreement with data. The experiments of Prasher et al. [33] in-
dicate only a weak dependence of viscosity on T and particle diameter. Corcione
[9] shows a weak dependence on T but presents evidence for the diameter depen-
dence. In the absence of agreement we will begin with a simple representation,
where µnf = µnf (ϕ), given by Maiga et al. [25] who fitted the experimental data
of a water based nanofluid by Wang et al. [37] with the following relation

µnf = (1 + 7.3ϕ+ 123ϕ2)µbf ,(17)

and for ethylene glycol based fluids,

µnf = (1− 0.19ϕ+ 306ϕ2)µbf .(18)

The thermal conductivity of a nanofluid is a thorny issue, with much discrep-
ancy and debate concerning the often remarkable experimental results. The basic
theoretical model, the Maxwell model, provides a simple relation for knf in terms
of ϕ and kbf . For ϕ≪ 1 this relation may be linearised to show

knf = kbf (1 + Ckϕ),(19)

where Ck ≈ 3. This is well-known to significantly underpredict the thermal
conductivity. The Maxwell model is based on a steady-state analysis: a recent
theory involves determining the conductivity via a time-dependent analysis which
leads to Ck ≈ 5 and provides significantly improved agreement with published
data [31]. The new equation that takes into account the volume fraction and
particle properties is given by

(20) knf =
kbf

(1− ϕ1/3)2

[
(1− ϕ) + ϕ

ρnpcnp
ρbfcbf

]
n− 1

2(n+ 1)

[
1 + ϕ1/3

2
− 1

n+ 1

]−1

,

where n = 2.233 is a constant determined by the boundary condition [31].
To reduce the complexity of the system we now make the following assumptions:

(1) Viscous dissipation is negligible, Φ ≈ 0. This will be the case for most
standard nanofluid flows and is clear from the numerical solutions pro-
vided in [21] for flow with U ≈ 2m/s in a channel of around 50µm. Their
results for water and CuO nanoparticles showed a negligible difference
with and without viscous dissipation, while excluding the dissipation in
ethylene glycol led to a very slight difference.

(2) Taking ϕ ≪ 1 we may write f ≈ ϕρnp/ρbf . Nanofluids typically used for
cooling purposes have a low volume fraction of nanoparticles.
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(3) Gravity is negligible (this is simply so we may focus on the heat transfer,
rather than the driving force).

(4) The system is in a steady state, so we are considering the fully-developed
region.

Under these assumptions the flow is now governed by

∇ · (ρnfu) = 0(21)

ρnfu · ∇u = −∇p+∇ · (τ̃)(22)

∇ · (χnfuT ) = ∇ · (knf∇T )(23)

∇ · (ρnfϕu) = ∇ ·
[
CBT∇ϕ+ CTϕ

∇T
T

]
.(24)

In the following section we will analyse this system subject to a uniform flux
condition along a flat boundary, y = 0,

(25) knfTy = −Q .
The flow is subject to no-slip conditions at y = 0

(26) u = v = 0 ,

while the inlet values, at x = 0, are defined as

(27) ϕ = ϕB T = T∞ u = (U, 0).

The above system is almost identical to that of Buongiorno [5]. To obtain that
system requires assuming incompressible flow (so reducing equation (21) to∇·u =
0), setting CB = DB/T, CT = DT/ϕ in (24) gives [5, eq. (19)], the energy equation
[5, eq. (23)] differs from our equation (23) since it includes thermophoresis and
Brownian motion. However, the scaling later shows this to be negligible (in [5]
the Lewis number, of order 105, divides both terms) and in fact both terms are
neglected in all subsequent analysis. Savino and Paterna [34] work in terms of
mass fraction rather than ϕ. Their system is also similar to ours, but they retain
the time dependence and include gravity in the momentum equation to permit
buoyancy effects.
In the following section we carry out the standard boundary layer analysis on

equations (21-24) to determine the fluids ability to remove heat. This requires
us to augment the boundary conditions (25-27) with the far-field conditions

(28) u = U v = 0 T = T∞ as y → ∞ .

4. Steady-state boundary layer analysis

The standard boundary layer scaling [1] has

x̂ =
x

L
ŷ =

y

L

√
Re T̂ =

T − T∞
A

(29)

û =
u

U
v̂ =

v

U

√
Re p̂ =

p− p∞
ρbfU2

,(30)
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where U is the flow velocity in the far field (equal to the inlet velocity), Re =
ρbfUL/µbf is the Reynolds number and A is an as yet undetermined temperature
scale. An important point to note here is that we take U as a fixed velocity scale,
that is, it does not vary with ϕ. Using scalings independent of particle load allows
us to directly compare results in subsequent sections but, since an increase in ϕ
will lead to an increased viscosity, this means that fixed U requires an increase
in pressure gradient. In the following section we will show that the heat transfer
decreases with increasing ϕ, however since U is fixed our result actually shows the
HTC in a better light than it deserves. In fact, not only does the HTC decrease
with increasing ϕ with our model but it also costs more energy to move the fluid.
The variable physical parameters are scaled with the base fluid value

(31) µ̂nf =
µnf

µbf

ρ̂nf =
ρnf
ρbf

k̂nf =
knf
kbf

ϕ̂ =
ϕ

ϕB

χ̂nf =
χnf

χbf

.

At present this scaling will lead to a form of boundary layer system. To simplify
the problem we first examine the effect of the scaling on the ϕ equation (24).
Dropping the hat notation this becomes

∇ · (ρnfϕu) = γ
∂

∂y

[
(T + T∞/A)ϕy + λϕ

Ty
T + T∞/A

]
(32)

where γ = CBA/µbf , λ = CT/(CBA). The temperature scale is chosen based on
the input of heat to the system, so we non-dimensionalize the boundary condition

in equation (25), KA
√
Re

L
Ty = −Q, and choose A = QL/(kbf

√
Re). In Table 1 we

present the device and material properties for Ethylene Glycol (EG) and water
based nanofluids with Al2O3 particles, from which the values for the coefficients
in the non-dimensional equations are calculated: these are presented in Table 2.
For both EG and water γ = O(10−7) ≪ 1 and so the right hand side of (32) is
negligible. Consequently we may write

∇ · (ρnfϕu) = ϕ∇ · (ρnfu) + ρnfu · ∇ϕ ≈ 0 .(33)

The steady-state continuity equation, equation (21), allows us to reduce this to

u · ∇ϕ = 0 .(34)

The physical significance of this equation is that ϕ is constant along the stream-
lines. From the inlet condition we know ϕ = ϕB and so on all streamlines ϕ = ϕB

everywhere. Since γ = O(10−7) for water the approximation ϕ = ϕB is accurate
to 10−5%, and for ethylene glycol it is even more accurate. Put another way, since
the diffusion effects due to Brownian motion and thermophoresis are so small the
particles simply move with the fluid and, in particular, are not affected by the
heat input at the boundary. Although the value of γ may vary with the nanofluid
or heat flux, its miniscule value indicates particle diffusion through Brownian mo-
tion or thermophoresis is unlikely to ever play an important role in the boundary
layer flow of a nanofluid. This concurs with the findings of Evans et al. [14],
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who used molecular dynamics to demonstrate that Brownian motion has only a
minor effect on the enhancement of thermal conductivity of nanofluids.
The conclusion that ϕ = ϕB has significant implications for the mathematical

model, for example it shows that physical quantities such as ρnf , µnf and knf
are also constant and determined via (10), (20) and (17,18). With constant
physical quantities we may apply standard boundary layer theory to the u and
T equations.

Table 1. Device and material properties of water and Ethylene
Glycol (EG) based nanofluids with Al2O3 nanoparticles.

Quantity Symbol Units Value

Particle diameter dp m 20× 10−9

Far-field temperature T∞ K 300

Plate flux Q Wm−2 107

Length of plate L m 10−2

Far-field velocity U ms−1 10−1

Thermal conductivity knp, kbf Wm−1K−1 30, 0.258, 0.609
(Al2O3, EG, H2O)

Density (Al2O3, EG, H2O) ρnp, ρbf kgm−3 3950, 1108.8, 103

Specific heat capacity cnp, cbf Jg−1K−1 800, 2360, 4187
(Al2O3, EG, H2O)

Viscosity (EG, H2O) µbf Nsm−2 1.61× 10−2, 10−3

Boltzmann’s constant kB JK−1 1.38× 10−23

Table 2. Values of coefficients in non-dimensional equations
based on properties given in Table 1.

Quantity Ethylene Glycol Water

CB 4.3825× 10−15 7.0559× 10−14

CT 3.1918× 10−8 5.0721× 10−9

β 0.0022 0.0051

Re 68.8696 103

Pr 147.2713 6.8752

A 4.6705× 104 5.1926× 103

γ 1.2714× 10−8 3.6638× 10−7

λ 155.9362 13.8437
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With the above scaling the governing steady-state equations become

∂u

∂x
+
∂v

∂y
= 0(35)

ρi

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µi

∂2u

∂y2
+O(1/Re)(36)

0 =
∂p

∂y
+O(1/Re)(37)

u
∂T

∂x
+ v

∂T

∂y
=
ki
χi

1

Pr

∂2T

∂y2
+O(1/Re) ,(38)

where the subscript i denotes the inlet value of each quantity for the nanofluid
and the Prandtl number Pr = µbfχbf/(ρbfkbf ). Equation (37) indicates p = p(x).
In keeping with standard boundary layer theory we note that approaching the
far-field u → 1, v → 0 and so equation (36) determines px = 0. Hence the
problem is now described by (35) and

u
∂u

∂x
+ v

∂u

∂y
= νi

∂2u

∂y2
(39)

u
∂T

∂x
+ v

∂T

∂y
=
ki
χi

1

Pr

∂2T

∂y2
,(40)

where νi = µi/ρi. These equations and the subsequent boundary conditions could
be further simplified by choosing the inlet values of the physical parameters in
the scaling but this would mean that the length and height scales would vary for
each inlet volume fraction. Using the base fluid values means that our subsequent
results may be compared on the same graph, with the same scales.
The imposed non-dimensional boundary conditions are

u = v = 0, kiTy = −1 at y = 0,(41)

u = 1, v = 0, T = 0 as y → ∞.(42)

4.1. Flow over a flat plate. The well-known Blasius solution for boundary
layer flow over a flat plate (see [1] for example) involves first introducing a stream
function ψ where

u =
∂ψ

∂y
v = −∂ψ

∂x
.(43)

This automatically satisfies the continuity equation, (35). The similarity vari-
able η = y/

√
2νix is then introduced. To satisfy the momentum equation, (39),

requires ψ =
√
2νixf(η) where f is an unknown function determined from

f ′′′ + ff ′′ = 0 ,(44)

where primes denote differentiation with η. This is simply the transformed version
of equation (39). The boundary conditions u = v = 0 at y = 0 and u → 1 as
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y → ∞ become

f(0) = f ′(0) = 0 f ′(∞) = 1 .(45)

In fact this boundary value problem may simplified using Töpfer’s transformation
f(η) = rF (rη), where r > 0 is a constant. The Blasius equation remains the same

F ′′′ + FF ′′ = 0 ,(46)

but it may be solved subject to the conditions

F (0) = 0 F ′(0) = 0 F ′′(0) = 1 ,(47)

that is, we solve an initial value problem (which is much easier to deal with
than a boundary value problem). The solutions of the two systems will coincide
provided

f ′(∞) = r2F ′(∞) = 1(48)

which then requires r = (F ′(∞))−1/2. The numerical solution of (46,47) deter-
mines r ≈ 0.7773.
The same transformation could be used to reduce the heat equation but the

flux condition at y = 0 does not permit a similarity form. Consequently, at this
stage we must look for an approximate solution form.

4.2. Solution by Heat Balance Integral Method (HBIM). A standard ap-
proximate method to analyse boundary layer flow was developed by von Karman
and Pohlhausen. From this stemmed the Heat Balance Integral Method (HBIM)
which is primarily used on thermal problems. Obviously we are interested in the
boundary layer flow, but there has been much more research on the HBIM so
we will use techniques developed for this method to analyse the current prob-
lem. Specifically, we will employ a technique described in [29] to approximate
the momentum and thermal boundary layer flow of a power law fluid.
If we consider the flow equation, equation (39), then the HBIM involves choos-

ing a simple function to approximate the velocity over a finite boundary layer
δ(x). For y > δ the deviation of velocity from that of the bulk flow is negligible
(although we do not define what constitutes negligible). In this case the velocity
boundary layer would be defined by the boundary conditions u(x, δ) = 1 and
uy(x, δ) = 0. If the approximating function is a polynomial of the form

(49) u = a0 + a1

(
1− y

δ

)
+ ap

(
1− y

δ

)p

,

then the conditions u(x, δ) = 1 and uy(x, δ) = 0 determine a0 = 1, a1 = 0. The
no-slip condition at y = 0 determines ap = −1 and so

(50) u = 1−
(
1− y

δ

)p

.
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The expression for u involves two unknowns, δ(x) and p. The velocity boundary
layer thickness is determined by integrating equation (39) over the region y ∈ [0, δ]

(51)

∫ δ

0

uux + vuydy = νi

∫ δ

0

uyydy .

Noting from the continuity equation (35) ux = −vy, we may write the above
integral momentum equation

(52)
d

dx

∫ δ

0

u(1− u)dy = νi
∂u

∂y

∣∣∣∣
y=0

,

see [8, 29] for more details. Substituting for u from equation (50) leads to a single
ordinary differential equation for δ with solution

(53) δ = α
√
x

where α =
√

2νi(p+ 1)(1 + 2p) and δ(0) = 0. The standard HBIM and the
von Karman-Pohlhausen technique take p = 2 however a more accurate method,
developed by Myers [27, 28] is to choose p to minimise the least-squares error when
the approximating function is substituted back into the momentum equation. In
this case the error function is defined as

(54) Ep =

∫ δ

0

(
∂G

∂x
− νi

∂2u

∂y2

)2

dy

where G = u(u−1). Note that νi is a function of the inlet values, and so depends
on the inlet volume fraction. Consequently the optimal p value could also vary
with the volume fraction, however our calculations with ϕB varying between 1%
and 10% show p = 2.7237 with less than a 10−2% variation. To demonstrate
the result of this mehtod in Figure 1 we compare velocity profiles of (50) with
p = 2.7237 and that of the Blasius soltuion at x = 0.1 with ϕB = 5%. Near the
surface, y = 0, the agreement is excellent. For y > 1 there is some divergence, but
the solutions both end close to y = 2.5 (indicating the δ calculation is accurate).
However, for practical purposes the important point is that the approximation
works well near the boundary, so allowing an accurate calculation of the drag
coefficient. The decay to the far field velocity is of less practical importance.
In [29] the similarity solution for a Newtonian fluid with a fixed temperature
boundary condition was also calculated and compared with the HBIM solution.
Again the approximation was excellent near the boundary (in fact better than
the velocity boundary layer). In this case it allowed the HTC to be accurately
calculated.
For the energy equation we define δT as the thickness of the thermal boundary

layer, then the conditions T (x, δT ) = 0, Ty(x, δT ) = 0, kiTy(x, 0) = −1 determine
the temperature profile

(55) T =
δT
kiq

(
1− y

δT

)q

.
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Figure 1. Comparison of the exact Blasius and approximate
HBIM solutions for the velocity profile at x = 0.1 with ϕB = 5%.

The heat balance integral is determined by integrating the energy equation (40)
over y ∈ [0, δT ]

(56)
d

dx

∫ δT

0

uTdy = −mi
∂T

∂y

∣∣∣∣
y=0

=
mi

ki

where mi = ki/(χiPr), see [29] for details.
Substituting for u, T from (50,55) requires numerical integration since p is

a non-integer, however an analytical solution is preferred so, following [8, 29],
we assume that the thermal boundary layer is much smaller than the velocity
boundary layer

(57) δT = ϵδ

where ϵ ≪ 1 (this is confirmed a priori) is to be determined. On applying this
to (50) and noting that within the HBI y ≪ δT we can make the approximation

(58) u ≈ 1−
(
1− py

δ

)
=
py

δ
.

Now the HBI (56) may be integrated analytically giving

(59) ϵ = 3

√
miq(q + 2)(q + 1)

pα2
.

For ϕb ∈ [1, 10]% the value of the small parameter varies ϵ ∈ [0.2971, 0.2635].
The exponent q is found by minimising the error

(60) Eq =

∫ δT

0

(
∂F

∂x
−mi

∂2T

∂y2

)2

dy
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where F = uT . According to equation (60) the value of q may vary with mi,
which depends on ki, χi and Pr, so it may be a function of material properties
and volume fraction. For water, with ϕB ∈ [1, 10]% we find q = 1.9975 (with less
than 0.01% variation), for EG q = 2.014 (with less than 0.4% variation).
With no analytical solution to verify the thermal approximation we developed a

finite difference code to solve equations (35,39,40) subject to boundary conditions
(41,42) and inlet conditions u = 1, v = 0 and T = 0. The semi-infinite y range
was cut off at large y where conditions (42) applied. For example at x = 0.1 it was
sufficient to calculate results to y = 5. Standard finite difference approximations
were made for the derivatives in y and the solution was marched in x with implicit
stepping. The results showed reasonable agreement with the temperature profiles
predicted by equation (55) with the worst disagreement occurring at y = 0. With
x = 0.1 the HBIM and numerical solutions differed by approximately 10%. We
will discuss this difference later with regard to Figure 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

x

δ

δ
T

Figure 2. Delta profiles are compared for different volume frac-
tions; ϕB = 1, 5, 10% are represented by dotted, dashed and solid
lines, respectively, for a Al2O3-water nanofluid.

In Figure 2 we plot velocity and thermal boundary layers for three different
volume fractions, ϕB = 1, 5, 10% which are represented by dotted, dashed and
solid lines respectively. First we note that δT ≪ δ in all cases, confirming the
assumption made earlier. A more important point is that the thermal boundary
layer thickness increases with volume fraction suggesting that the nanofluid could
indeed extract more heat with higher nanoparticle concentrations. In Figure 3
we show the velocity profile u(y) at x = 0.05 for the same three volume fractions.
Here we note that velocity decreases with increasing volume fraction, indicating
that the mass transport is slower, which may then have an adverse effect on heat
transport.
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Figure 3. Velocity profiles predicted by the HBIM for different
volume fractions: ϕB = 1, 5, 10% are represented by dotted, dashed
and solid lines, respectively, for a Al2O3-water nanofluid.

Figures 2 and 3 show the trade off between increasing the heat flow (through
increasing k) whilst decreasing the fluid flow (through increasing µ) by adding
nanoparticles. To determine which effect is dominant we now return to the HTC
calculation. Defining a non-dimensional HTC ĥ = Lh/(kbf

√
Re) and dropping

the hat notation, equation (5) may be written

hnf =

∫ δT
0
u dy∫ δT

0
uT dy

.(61)

In Figure 4 the HTC (61) is plotted against the device length for three values of
the volume fraction, ϕB = 1, 5, 10%, and the base fluid. What is clear from this
graph is that the HTC decreases with increasing volume fraction. Furthermore,
as discussed earlier the velocity scale U is fixed in all cases, and so an increase
in ϕB (which increases viscosity) requires an increase in ∆p. So with higher par-
ticle loadings the system requires more energy to move the fluid and this further
decreases the system’s efficiency. That is, according to the present mathematical
model and for the cases we have studied for fluid and heat flow of a nanofluid
there is no augmentation in the HTC ; in fact it appears that the opposite occurs,
despite the numerous claims based on the same theory. However, our theoretical
result does concur with Ding et al. [12] who state that nanofluids with an en-
hanced thermal conductivity do not guarantee an enhancement in the convective
heat transfer. Earlier we discussed the error in using the HBIM approximation
to the temperature. At x = 0.1 we found an error of approximately 10% between
the approximate and numerical solutions. From Figure 4 we see that there is
an approximately 30% decrease in HTC, which cannot be explained away by a
10% error in temperature. In the following section we will discuss why so many



C
R
M

P
re
p
ri
nt

S
er
ie
s
nu
m
b
er

11
78

16 M.M. MACDEVETTE, T.G. MYERS, B. WETTON

researchers have found the opposite result to ours using a similar initial set of
equations.
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Figure 4. Variation of the heat transfer coefficient along the sur-
face for the base fluid (Ethylene glycol or water) and ϕB = 1, 5, 10%

5. Apparent improvement in HTC?

Buongiorno [5] wrote the seminal paper describing the mathematical model for
nanofluid heat transfer including thermophoresis and Brownian motion. Savino
and Patterson [34] developed a similar model accounting for gravity effects. Nu-
merous theoretical studies have been based on the form of model developed in
these two papers and, in contrast to the present conclusion, the authors generally
conclude that the HTC increases with volume fraction. This raises the obvious
question of why do our results differ from this previous body of work? There
exist too many studies to go through each one individually, so now we will focus
on a few highly cited ones.
Buongiorno’s model is a special case of that described in the present paper. In

§5 of his paper he investigates the HTC in a ‘laminar sublayer’ where the flow is
described by

∂

∂y

(
µnf

∂v

∂y

)
= 0

∂

∂y

(
knf

∂T

∂y

)
= 0

∂

∂y

(
DB

∂ϕ

∂y
+
DT

T

∂T

∂y

)
= 0 .(62)

This region is matched to a turbulent sublayer. Equations (62) are formally
derived from equations (22-24) by rescaling height to focus on a region close to
the wall. To reproduce this we alter the scaling given by equations (29,30) to
y = Hȳ, v = HUv̄/L, where H is an as yet unspecified height-scale (previously
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we chose H = L/
√
Re). Scaling equation (24) leads to

∇ · (ρnfϕu) =
CBAL

H2ρbfU

∂

∂y

[
(T + T∞/A)ϕy + λϕ

Ty
T + T∞/A

]
.(63)

In the analysis of the previous sections we neglected the right hand side of this
equation since the leading coefficient was small, now to retrieve the third equation
in (62) we require this same coefficient to be large which indicates

H2 ≪ CBAL

ρbfU
⇒ H ≪ CBqL

ρbfkbfU
,(64)

after applying the definition A = qH/kbf . To get some idea of the thickness H
of this sublayer consider water flowing at a velocity 1cm/s over a section with
L = 1cm and CB = 7 × 10−14, as shown in Tables 1 and 2. This results in
H ≪ 1nm. Travis et al. [35], compared molecular dynamics simulations to
computations based on the Navier-Stokes equations, to show that continuum
theory may only be applied to water flow down to around 3nm. A further issue
is that it is well known from experiments that the actual laminar sublayer has
a thickness δ ≈ 11.6µ/(ρU), taking the base fluid values for the viscosity and
density from Table 1 gives δ ≈ 1.2mm. So, with water as the base fluid the
system of equations (62) apply in a region around 6 orders of magnitude thinner
than the actual laminar sublayer and so cannot be matched to the outer turbulent
region, also they are valid on a height-scale much smaller than that required by
the continuum limit.
Our analysis in the previous section used boundary layer theory. This is a

standard technique to determine flow and heat transfer at a boundary. The
key to boundary layer theory is finding an appropriate similarity variable which
transforms the governing partial differential equations to ordinary differential
form. Kuznetsov and Nield [23] add buoyancy to Buongiorno’s system and seek
similarity solutions involving the variable η ∝ y/x1/4. Their governing equation
for ϕ then reduces to an ordinary differential equation,

g′′ +
3

4
Leψg

′ +
Nt

Nb

θ′′ = 0(65)

where g, θ are the functions representing the non-dimensional ϕ, T and ψ is the
stream function. The strength of Brownian motion and thermophoresis are rep-
resented by the coefficients Nb, Nt respectively and Le = αnf/DB is the Lewis
number. Values for these coefficients are calculated in [5] (with Nb/Nt denoted
NBT ). The values quoted for water containing 10nm alumina nanoparticles are
Le = 8× 105, NBT = 0.2; for 10nm copper nanoparticles Le = 7× 105, NBT = 2.
The extremely high value of Le indicates that the non-dimensional equation (65)
is incorrectly scaled. Dividing through by Le leads to g

′ ≈ 0 and consequently ϕ
is constant (as determined in our analysis). However, the results presented in [23]
show a significant variation in g, which then affects the velocity and temperature
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profiles (since g appears in all three governing equations) and consequently the
heat transfer. The reason for this difference between our conclusion of constant
ϕ and theirs is that they choose Le = 10, rather than the correct physical value.
The larger value would make the boundary layer thickness negligible. However,
the negligible terms in (65) could be retained by introducing a new height scale
(of the order 1/Le smaller than the boundary layer height-scale) but again this
brings us to the limit of continuum theory.
Khan and Pop [18] use a slightly different scaling to [23] for the similarity

variable to obtain an equation almost identical to (65). Their Lewis number is
defined as Le = ν/DB, where ν is the kinematic viscosity. For water ν ≈ 10−6
and so Le ∈ [104, 106]. They also employ the value Le = 10.
Savino and Paterna [34] study a system almost identical to our initial system

(6–9). The focus of their study is convective motion of a nanofluid contained
between two differentially heated plates held 1mm apart and they do determine
a difference in motion due to the effects of thermophoresis and Brownian motion.
However, their time-scale is of the order 105s or 27 hours for motion in a 1mm
gap and the results are most noticeable in conditions where gravity is 10−6 of the
standard value.

6. Conclusion

In this paper we have developed a model for nanofluid flow including the effects
of thermophoresis and Brownian motion with the aim of determining whether
nanofluids improve heat removal. The heat transfer coefficient was examined
within standard boundary layer theory. The boundary layer formulation showed
quite clearly that, close to the substrate thermophoresis and Brownian motion
effects are negligible compared to advection. Consequently the particle volume
fraction remains constant along the streamlines and so the fluid properties, such
as density, viscosity and specific heat, are also constant.
The most significant result of this analysis is the clear decrease in the heat

transfer coefficient as the particle concentration increases. Our results were some-
what flattering with regards to the HTC since we used a fixed far-field velocity.
This means that as the particle concentration increases, and so the viscosity also
increases, the pressure drop or pumping power must also be increased. So, not
only did the HTC decrease with particle concentration but it cost more energy
to pump the fluid.
Our result contradicts many analyses based on similar governing equations,

however, it is backed up by recent experimental evidence, see [6, 12] for example.
Our model also required a number of assumptions and simplifications, but these
could all be quantified and are not of sufficient magnitude to alter our conclu-
sion regarding the heat transfer. Possible reasons for this discrepancy between
our conclusion and that of previous papers include the rather loose definition of
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heat transfer coefficient prevalent in the literature and a number of unjustified
assumptions and approximations as well as incorrect parameter values.
This paper does not prove that nanofluids cannot improve heat removal. It

may be that the enhancement observed in some experiments is due to a phys-
ical effect not included in our model. Further, we have only presented results
for water or ethylene glycol based fluids with Al2O3 particles (although results
with CuO particles were found to be similar) in a single flow configuration. It is
possible that some other fluid-solid combinations may have a beneficial effect on
heat transfer. However, given the clear deterioration in HTC shown by our calcu-
lations, there would need to be a marked change in the fluid properties (such as
a much larger increase in thermal conductivity coupled with a significantly lower
viscosity increase) for the current form of model to suggest nanofluids improve
heat removal capacity.
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