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A SIMPLE YET EFFECTIVE MODEL FOR THERMAL
CONDUCTIVITY OF NANOFLUIDS

M.M. MACDEVETTE, H. RIBERA, AND T.G. MYERS

Abstract. In this paper we analyse the time-dependent heat equations over
a finite domain to determine expressions for the thermal diffusivity and con-
ductivity of a nanofluid. Due to the complexity of the standard mathematical
analysis of this problem we employ a well-known approximate solution tech-
nique known as the Heat Balance Integral Method. This allows us to derive
simple analytical expressions for the thermal properties, which appear to de-
pend primarily on the volume fraction and liquid properties. The model is
shown to compare well with experimental data taken from the literature even
up to relatively high concentrations and predicts significantly higher values
than the Maxwell model for volume fractions approximately greater than 1%.
The results suggest that the difficulty in reproducing the high values of con-
ductivity observed experimentally may stem from the use of a static heat flow
model applied over an infinite domain rather than applying a dynamic model
over a finite domain.

1. Introduction

There exists a vast literature on the enhanced thermal properties of nanofluids
when compared to their base fluids. The often remarkable enhancement then
suggests nanofluids as the solution for heat removal in many modern electronic
devices. However there are discrepancies and much debate over experimental
findings and so far no satisfactory mathematical model has been proposed to
describe the thermal response of a nanofluid [1, 5, 6, 14, 26].
The classical analysis of heat conduction for solid-in-liquid suspensions is that

of Maxwell, based on effective medium theory. Das et al [3] describe in detail
how this result is derived. The nanofluid is assumed to occupy a sphere of ra-
dius r0. This sphere is approximated as a homogeneous medium containing an
‘effective fluid’ and the steady state heat equation is solved in the region outside
of the sphere, r ∈ [r0,∞], subject to continuity of temperature and heat flux
at the boundary r = r0. The result obtained from this analysis is then applied
to describe the thermal response of an infinite volume of liquid surrounding a
single particle. Using the principle of superposition this last result may then be
used to approximate the temperature profile for a fluid containing many particles.

Key words and phrases. Nanofluid; Enhanced thermal conductivity; Mathematical model;
Heat Balance Integral Method; Maxwell model.
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2 M.M. MACDEVETTE, H. RIBERA, AND T.G. MYERS

The two temperature expressions (outside the sphere of radius r0 and that ob-
tained by superposition) are finally equated to determine an appropriate thermal
conductivity for the effective fluid:

ke =

[
2kl + kp + 2ϕ(kp − kl)

2kl + kp − ϕ(kp − kl)

]
kl ,(1)

where ke, kp, kl represent the effective, particle and liquid thermal conductivity
and ϕ is the particle volume fraction.
There are obvious problems with the Maxwell model. Firstly, it is based on

analysing the heat flow in the material surrounding an equivalent nanofluid and
the heat flow around a particle, as opposed to analysing the actual nanofluid
or particle behaviour. The analysis is carried out over an infinite region. The
principle of superposition is then applied to determine the response around in-
finitely many particles, each separated by an infinite volume of fluid. Hence the
result can only be applied to a highly disperse fluid where the particles are so
far apart that an energy change in one has a negligible effect on any other par-
ticle. This approach will clearly lead to problems as the particle concentration
increases. Further, the Maxwell model is based on a steady-state solution but in
general one would wish to analyse how a nanofluid responds in a time-dependent
situation.
Despite the various drawbacks the Maxwell model is known to work well with

low volume fraction fluids containing relatively large particles (microscale or
above). Only when the particle size decreases to the nanoscale do problems
become apparent. For example, for sufficiently small volume fractions, ϕ, the
relation between the conductivity and volume fraction may be linearised

ke
kl

≈ 1 + Ckϕ ,(2)

where Ck is known as the conductive enhancement coefficient. Keblinski et al [12]
compared the data from various groups working with nanofluids and found that
for most of the data Ck ≈ 5 whilst the Maxwell model predicts Ck ≈ 3. A linear
approximation to the Maxwell model follows easily from (1) by first noting kp
is much larger than kl (see Table 1) and so kl may be neglected in the square
brackets. Then, using a binomial expansion based on small ϕ we obtain the
correct enhancement coefficient,

ke ≈
[
kp + 2ϕkp
kp − ϕkp

]
kl ≈ (1 + 2ϕ)(1 + ϕ)kl ≈ (1 + 3ϕ)kl ,(3)

which coincides with the conclusions of [12].
In an attempt to improve the fit between theory and experiment various re-

searchers have extended or modified Maxwell’s model. The Hamilton and Crosser
[9] model is a slight adaptation to account for particle shape: for spherical parti-
cles it reproduces the Maxwell result. Yu and Choi [34] reapply the Maxwell result
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to include the effect of a nanolayer on the particle surface, they subsequently ex-
tend this to the Hamilton-Crosser model [35]. However, the thermal conductivity
and thickness of this nanolayer are unknown. Wood and Ashcroft [32] propose a
multi-component version of the Maxwell model which is then extended by Wang
et al [30] to incorporate particle clustering for non-metallic particles and is valid
for very low volume fractions (below 0.5%). In each case the introduction of new
effects and new parameters permits better agreement with certain experiments.
For example, in [34] choosing a nanolayer with thickness 2nm and nanolayer con-
ductivity greater than ten times that of the base fluid leads to excellent agreement
with data for a CuO-Ethylene glycol suspension. In [3] a comprehensive list of
variations to Maxwell’s model and similar theories are described. They go on to
describe a number of dynamic models which incorporate effects such as Brown-
ian motion and nanoconvection. Examples of these include the work of Koo and
Kleinstreuer [14] who alter the Maxwell model by adding on a term to account
for Brownian motion. Prasher et al [26] multiply the Maxwell result to include a
Brownian factor. Their model has two free parameters which are then chosen to
match experiment.
Tillman and Hill [28] take a slightly different approach by focussing on the effect

of the nanolayer. They analyse the steady-state heat equation by first assuming
some asymmetry which motivates a solution involving Legendre polynomials (the
functions that describe the polar angle variation of the solution). Their nanolayer
has a varying conductivity and unknown thickness and they investigate possible
forms for klayer(r). They found the nanolayer thickness as a percentage of the
particle radius, ranging between 19% to 22%, when klayer is a polynomial of degree
greater than 23.
The motivation behind the above studies and a host of others including, for

example, particle aggregation or based on matching experimental observation,
is the lack of a theory which matches a wide range of experimental data. The
Maxwell model indicates thermal conductivity varies solely with volume fraction,
however, there is evidence indicating variation due to size, shape, particle mate-
rial, additives, pH and temperature effects[25] (and often evidence to the contrary
[25]). Brownian motion has been shown to provide improved agreement with cer-
tain data yet Keblinski et al [10] show that the time-scale for Brownian motion
is so much slower than thermal diffusion that it is unlikely to play an important
role in heat transfer. Of course, since Maxwell is steady-state any modification of
Maxwell (or models derived from it) would not be able to take into account differ-
ent time-scales. Liquid layers have been inferred via experiments and simulation,
but only around 1nm thick, which then cannot account for a sufficient increase in
conductivity [5]. Keblinski et al [11] suggest that much of the controversy over
thermal conductance prediction may be due to the assumption of well dispersed
particles, when in fact particle aggregation may take place.
Motivated by the obvious drawbacks of the Maxwell model and the difficulties

in matching experimental evidence and recent advances in the understanding of
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nano phenomena in this paper we take a different theoretical approach. Our
mathematical model, described in §3 will involve the time-dependent response
of a system containing a single nanoparticle surrounded by a finite volume of
fluid (so fitting into the dynamic category of models described in [3]). This
will be matched to the response of an equivalent fluid volume with an unknown
diffusivity. Given the mathematical complexity of this approach, in §2 we will
first describe an accurate approximate mathematical method for solving the heat
equation over a finite domain. In §4 we compare the expression for the thermal
conductivity determined through the present analysis with that of Maxwell and
experimental data. This shows that the present model not only predicts a signif-
icantly larger enhancement than Maxwell, but also matches well to a large range
of data, without the need for additions such as a nanolayer or Brownian motion.
Further, since the analysis is carried out over a finite volume it is not restricted
to highly disperse fluids.

2. The Heat Balance Integral Method

The mathematical model laid out in §3 will require the solution of time-
dependent heat equations in two adjacent finite volumes. The exact mathematical
solution is cumbersome, involving infinite series, and so it is difficult to isolate the
dependence on physical parameters. For this reason we will employ an approx-
imate solution technique known as the Heat Balance Integral Method (HBIM).
In the following we will illustrate the HBIM through an example, which will then
be used in our subsequent analysis. In §3.1 we will determine the exact solution
for the simpler problem of heat flow in a single fluid volume, this will then be
compared to the HBIM to solution to verify its accuracy.
Consider the standard thermal problem, defined on a semi-infinite domain,

where a material initially at a constant temperature is heated to a different tem-
perature at the boundary y = 0. In non-dimensional form this may be written

∂u

∂t
=

∂2u

∂y2
u(0, t) = 1 u|y→∞ → 0 u(y, 0) = 0 .(4)

The HBIM involves choosing a simple function to approximate the temperature
over a finite region δ(t), known as the heat penetration depth. Since the heat
equation has infinite speed of propagation the heat penetration depth is a notional
concept. For y ≥ δ the temperature change above the initial value is negligible
(although we do not define what constitutes negligible). For this example the
heat penetration depth would be defined by the boundary conditions u(δ, t) = 0
and uy(δ, t) = 0.
If the approximating function is a polynomial of the form

u = a0 + a1

(
1− y

δ

)
+ an

(
1− y

δ

)n

,(5)
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then the conditions u(δ, t) = 0 and uy(δ, t) = 0 determine a0 = a1 = 0, the
condition at y = 0 determines an = 1 and so

u =
(
1− y

δ

)n

.(6)

The expression for u involves two unknowns, δ(t) and n. The heat penetration
depth is determined by integrating the heat equation over the region y ∈ [0, δ]

(7)

∫ δ

0

∂u

∂t
dy =

∫ δ

0

∂2u

∂y2
dy .

This is termed the heat balance integral. Since u(δ, t) = uy(δ, t) = 0 this leads to

(8)
d

dt

∫ δ

0

u dy = −∂u

∂y

∣∣∣∣
y=0

.

Substituting for u from equation (6) leads to a single ordinary differential equation
for δ with solution

δ =
√
2n(n+ 1)t ,(9)

where δ(0) = 0.
The standard HBIM takes n = 2, although there are many other possibilities,

often chosen through knowledge of an exact solution, see [20]. Myers [23] devel-
oped a method, which minimises the least-squares error when the approximate
function is substituted back into the heat equation. This not only ensures a
globally accurate representation but also removes the need for an exact solution.
With the above problem the value of n that minimises the error is n = 2.233:
this value leads to excellent agreement with the exact solution.
For problems over a finite domain the HBIM generally involves two stages. The

first is as described above, this lasts until the heat penetrates to the boundary.
In the second stage the boundary temperature, rather than δ, is the second
unknown. A more detailed explanation of the HBIM, error minimisation and
further examples are provided in [20, 21, 23, 24].

3. Thermal analysis of a particle-fluid system

To describe the thermal response of a nanoparticle in a fluid consider a spherical
volume of fluid, with radius R, containing a solid particle, with radius rp. The
radius R is related to the volume fraction in the following manner. For a given
volume V , the volume fraction of particles is

ϕ =
(4/3)πr3pN

V
(10)

where N is the number of particles contained in V . If we divide the volume into
N equal components of radius R then each volume V = (4/3)πR3 contains a
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single nanoparticle and so

ϕ =
(4/3)πr3p
(4/3)πR3

=
r3p
R3

.(11)

A disperse fluid, with few particles, will have R large and hence rp/R ≪ 1, whilst
a higher concentration of particles will result in higher rp/R. For a known volume

V containing N particles we may define R = 3
√
3V/(4πN).

The heat equations in the particle and liquid are

∂T

∂t
=

αp

r2
∂

∂r

(
r2
∂T

∂r

)
r ∈ [0, rp](12)

∂θ

∂t
=

αl

r2
∂

∂r

(
r2
∂θ

∂r

)
r ∈ [rp, R] .(13)

Initially the fluid and particle have the same, constant temperature T0. At time
t = 0 the boundary r = R is heated to a different temperature TR. Assuming
continuity of temperature and heat flux at the interface, the governing equations
are then subject to the following boundary conditions

θ(r, 0) = T (r, 0) = T0 θ(R, t) = TR θ(rp, t) = T (rp, t) = Tp(t)(14)

kl
∂θ

∂r

∣∣∣∣
r=rp

= kp
∂T

∂r

∣∣∣∣
r=rp

∂T

∂r

∣∣∣∣
r=0

= 0 ,(15)

where Tp is the unknown temperature at the particle-fluid interface.
To simplify the problem we first write it in non-dimensional form

T̂ =
T − T0

TR − T0

r̂ =
r

R
t̂ =

t

τ
,(16)

and immediately drop the hat notation. Since the liquid occupies most of the
volume we choose the standard diffusion time-scale τ = R2/αl and then

∂T

∂t
=

α

r2
∂

∂r

(
r2
∂T

∂r

)
r ∈ [0, rp](17)

∂θ

∂t
=

1

r2
∂

∂r

(
r2
∂θ

∂r

)
r ∈ [rp, 1] ,(18)

where α = αp/αl and rp is now the original particle radius divided by R. The
boundary conditions become

θ(r, 0) = T (r, 0) = 0 θ(1, t) = 1 θ(rp, t) = T (rp, t) = Tp(t)(19)

∂θ

∂r

∣∣∣∣
r=rp

= k
∂T

∂r

∣∣∣∣
r=rp

∂T

∂r

∣∣∣∣
r=0

= 0 ,(20)

where k = kp/kl.
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Table 1 contains a short list of thermal parameter values for typical substances
used to make nanofluids. The values α = αp/αl ∈ [60, 1200] and k = kp/kl ∈
[50, 1500] which appear in equations (17, 20) are both large. Therefore we may
divide both sides of the appropriate equations by these values and find that the
thermal problem in the particle may be well approximated by

0 ≈ 1

r2
∂

∂r

(
r2
∂T

∂r

)
(21)

T (r, 0) = 0 T (rp, t) = Tp(t)
∂T

∂r

∣∣∣∣
r=rp

≈ 0
∂T

∂r

∣∣∣∣
r=0

= 0 .(22)

For Al2O3 in water the largest error in this approximation comes through setting
Tr(rp, t) ≈ 0, this error is of the order kl/kp ≈ 1/50 = 0.02 or 2%. For Cu in
ethylene glycol the largest error comes through the heat equation by neglecting
the Tt term, which leads to errors of the order αl/αp ≈ 0.0008 or 0.08%. The
solution of this reduced system is simply

T (r, t) = Tp(t) ,(23)

where Tp(t) is an unknown function, however, the initial condition on T indicates
Tp(0) = 0. This solution shows that the temperature is approximately indepen-
dent of r in the nanoparticle. The physical interpretation of this is that changes
in the liquid temperature are relatively slow: the speed of heat flow in the liquid
is characterised by αl/R

2 and αl is much smaller than αp. When a change in liq-
uid temperature reaches the particle, which has a much higher diffusivity, it very
rapidly distributes the heat. Consequently, on the liquid time-scale the particle
temperature is approximately (to within the errors quoted above) the tempera-
ture at the liquid-particle boundary. Note, this result matches the experimental
observations of Philip and Shima [25] that the conductivity of the solid does not
dictate the conductivity of the nanofluid. It is also clear from simple equations,
such as the Maxwell equation (1), as shown by the approximation (3), with an
error of order kl/kp which is below 2% for the values quoted in Table 1.
To exploit the HBIM described in the previous section we now transform the

problem in the liquid to a Cartesian system, with heat applied at the left hand
boundary, by making the change of variables

θ =
u

r
y =

1− r

1− rp
.(24)

The heat equation in the liquid is now

∂u

∂t
= λ

∂2u

∂y2
(25)

where λ = 1/(1− rp)
2 and is subject to

u(y, 0) = 0 u(0, t) = 1 u(1, t) = rpTp(t)
∂u

∂y

∣∣∣∣
y=1

= −(1− rp)Tp .(26)
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Substance
Density
(kg/m3)

Specific heat
(J/kg K)

Diffusivity
(m2/s)

Conductivity
(W/m K)

Al203 4000 880 8.522× 10−6 30

Copper 8920 390 1.152× 10−4 401

Water 998 4190 1.387× 10−7 0.58

Ethylene Glycol 1110 2470 9.4102× 10−8 0.258

Table 1. Typical thermal parameter values for two nanoparticles
and base fluids.

The domain r ∈ [rp, 1] is transformed to y ∈ [0, 1] with the heat applied at y = 0.
The HBIM analysis of this system requires two stages. In the first stage heat
is applied at the boundary and penetrates to a depth δ ≤ 1, so the boundary
conditions at y = 1 are replaced with

u(δ, t) = 0
∂u

∂y

∣∣∣∣
y=δ

= 0 .(27)

This is exactly the problem formulated in §2 (with time scaled by a factor λ) and

so we define u by equation (6) with n = 2.233 and δ =
√
2n(n+ 1)λt. This stage

ends when δ = 1 at time t = t1 = 1/(2n(n+ 1)λ).
In the second stage the boundary conditions (26) apply and the HBIM analysis

is slightly modified,

u = rpTp + (1− rp)Tp(1− y) + (1− Tp)(1− y)n .(28)

In this case there is no δ, instead the boundary temperature, Tp(t), is the unknown
function of time. To allow continuity of temperature at t = t1, n = 2.233 again
(note the issues arising from switching n in different phases are discussed in [22]).
The heat balance integral is applied over y ∈ [0, 1] and leads to

dTp

dt
= Λ(1− Tp) ,(29)

where Λ = nλ/cT and cT = (1 + rp)/2− 1/(n+ 1), hence

Tp = 1− e−Λ(t−t1) .(30)

The HBIM problem is now completely solved. In Stage 1 u is defined by (6),

δ =
√

2n(n+ 1)λt and the particle temperature Tp = 0. This ends at time
t = t1. In Stage 2 u is defined by (28) and the particle temperature Tp by (30).
The non-dimensional temperature in each stage is determined by the relation
θ = u/r.
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3.1. Equivalent fluid analysis. To define an equivalent fluid we imagine a
sphere of fluid with diffusivity αe, in the non-dimensional system we write α′ =
αe/αl. If the equivalent fluid temperature is denoted θe then the temperature is
determined by

∂θe
∂t

=
α′

r2
∂

∂r

(
r2
∂θ

∂r

)
θe(1, t) = 1

∂θe
∂r

∣∣∣∣
r=0

= 0 .(31)

We define ue = rθe and denote the temperature at r = 0 as Tc(t). This is
obviously the limit of the liquid thermal problem described in the previous section
after setting rp = 0 and writing Tc instead of Tp. Consequently we may use the
previous solution.
In Stage 1 Tc = 0 and so the formulation matches the HBIM problem of §2 (with

time scaled by the diffusivity α′). Hence the temperature in Stage 1 is described

by equation (6) with δ′ =
√

2n(n+ 1)α′t. This ends at time t′1 = 1/(2n(n+1)α′).
In Stage 2 setting rp = 0 and Tp = Tc equation (28) gives

ue = Tc(1− y) + (1− Tc)(1− y)n(32)

where

Tc = 1− e−Λ′(t−t′1)(33)

and Λ′ = nα′/cT0 and cT0 = (n− 1)/(2(n+ 1)).
In fact, the thermal problem described by (31) has an exact solution obtained

by separation of variables. This may be used to verify the HBIM solution. In the
Cartesian system this is

us = (1− y) +
N∑

n=1

2
(−1)n

πn
sin(nπ(1− y))e−n2π2α′t ,(34)

where the subscript s denotes separable and r = 1− y.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t=0.02
0.40.2

0.08

y

Figure 1. Comparison of separable (solid) and HBIM (dashed) solu-
tions at times t = 0.02, 0.08, 0.2, 0.4
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Equation (34) may be used to verify the HBIM solution given by equation (32).
Since this system has no nanoparticle the equivalent fluid diffusivity is exactly the
liquid value, α′ = 1. The two sets of solutions, with α′ = 1, are shown in Figure 1,
the solid lines are the separable solutions and the dashed lines the HBIM solution
at times t = 0.02, 0.08, 0.2, 0.4. The value of t′1 = 1/(2n(n+1)) = 0.069 indicates
that for t = 0.02 we must use the Stage 1 solution where ue is given by equation
(6) and δ′ = 1/(0.04n(n + 1)) (recall δ′ indicates the position where the HBIM
method predicts the temperature rise is negligible). It may be observed that
the separable solution is approximately zero just slightly beyond the end of the
HBIM solution. For subsequent times the dashed curves are given by equation
(32). In general it is clear that there is a good correspondence between the two
sets of curves.
In the r, θ system we may write the temperatures as

θe = Tc + (1− Tc)r
n−1(35)

θs = 1 +
N∑

n=1

2
(−1)n

πnr
sin(nπr)e−n2π2α′t ,(36)

where the first equation holds for t > t′1. The temperature at the centre predicted
by the HBIM is zero for t ≤ t′1 and Tc(t) for t ≥ t′1. For the separable solution
the centre temperature is

θs(0, t) = lim
r→0

us(r, t)

r
= 1 +

N∑
n=1

2(−1)ne−n2π2α′t.(37)

Figure 2 shows a comparison of Tc(t) and θs(0, t). The HBIM solution is the
dotted line which begins at t′1 = 0.069 and steadily rises to the asymptote of
Tc = 1 (the steady-state solution is that the temperature everywhere matches
the boundary temperature θ(1,∞) = 1). The solid line is the separable solution,
which shows that the centre temperature is indeed close to zero for some time,
but it does start to increase noticeably earlier than the HBIM solution. For
t > 0.1 the HBIM solution predicts a slightly higher temperature but in general
the agreement is reasonable.
The goal of this exercise is to find an equivalent fluid that behaves in a similar

manner to the fluid with a nanoparticle. Now the HBIM solution has been shown
to be reasonably accurate we may achieve this goal by some form of matching of
the HBIM solution with a particle and for the equivalent fluid. In this case we
take the simple option of equating the decay rates in the expressions for Tp and
Tc (since this forces the temperature profiles to be similar). This is equivalent to
setting Λ = Λ′ and gives

αe =
αl

(1− rp)2
n− 1

2(n+ 1)

[
1 + rp

2
− 1

n+ 1

]−1

.(38)
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0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

t

T
c
(t)

θ
s
(0,t)

Figure 2. Comparison of Tc(t) and θs(0, t)

The radius rp is non-dimensional, scaled with the fluid radius R. We may express
this result in a more standard form via equation (11), which states rp = ϕ1/3,

αe =
αl

(1− ϕ1/3)2
n− 1

2(n+ 1)

[
1 + ϕ1/3

2
− 1

n+ 1

]−1

.(39)

Hence the thermal diffusivity of the equivalent fluid depends only on the liquid
diffusivity and volume fraction (the value of n = 2.233 is fixed). The composition
of the nanoparticle does not affect αe. Noting that αe = ke/(ρc)e and (ρc)e =
ϕρpcp + (1− ϕ)ρlcl, see [36], we may write the effective thermal conductivity as

ke =
kl

(1− ϕ1/3)2

[
(1− ϕ) + ϕ

ρpcp
ρlcl

]
n− 1

2(n+ 1)

[
1 + ϕ1/3

2
− 1

n+ 1

]−1

(40)

According to this formula, the equivalent particle conductivity does depend on
the particle properties, through (ρc)p, but there is no dependence on kp. However,
since the ratio ρpcp/(ρlcl) is order 1 and ϕ is small this is a weak dependence.
In proposing the above formula for the effective diffusivity and conductivity

we must stress the limitations of these results. The reduction of the governing
equations was based on the observation that αp/αl, kp/kl are both large for the
systems given in Table 1 but this may not be true for all nanofluid systems. So
the errors associated with the approximations will increase as the α and k ratios
decrease (for example with ceramic and organic particles). Philip and Shima [25]
discuss a wealth of experiments and devote a section to the effect of nanoparticle
material on the nanofluid properties. They quote studies, including their own,
that indicate kp is not an important factor in determining ke (they also quote
results leading to the opposite conclusion). The above formula indicates that the
key particle parameter is ρpcp. This does not appear to have been studied. In the
cases where αl/αp, kl/kp are not negligible then our approximations do not hold
and the nanoparticle properties will become important in determining αe, ke.
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4. Comparison with experiment
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Figure 3. Conductivity ratio ke/kl for Al2O3-water nanofluid with
kl = 0.58W/mK: equation (40) (solid line); Maxwell model equation (1)
(dashed line); experimental data from [31, 16, 2, 27, 33, 29, 4, 18]

The true test of a theory comes through comparison with experiment. In
Figures 3, 4 we compare the present prediction for ke with that of Maxwell and
a number of data sets taken from the literature. As expected, there is quite a
spread in the data and so we cannot hope to match all points. Figure 3 shows
results for an Al2O3-water nanofluid. The predicton of the current theory, given
by equation (40), is shown as the solid line, the Maxwell result of equation (1)
is the dashed line. For very low volume fractions the Maxwell curve lies above
ours and captures the data better, but for ϕ > 0.008 the present model rapidly
increases above Maxwell and, more importantly, passes between a large amount of
the experimental data. Figure 4 shows results for a Cu-ethylene glycol nanofluid.
In this case we only plot three sets of data points. Kwak and Kim [15] only
present one data point for ϕ > 0.005, but this point lies close to our curve, the
other two data sets lie on either side of the present result. As the volume fraction
increases the Maxwell model underpredicts the experimental data.
In both figures it is clear that the present model provides a much better ap-

proximation to the majority of experimental data when compared to the basic
Maxwell model for volume fractions approximately greater than 1%.
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Figure 4. Conductivity ratio ke/kl for CuO-ethylene glycol nanofluid
with kl = 0.258W/mK: equation (40) (solid line); Maxwell model equa-
tion (1) (dashed line); experimental data from [15, 13, 17]

5. Conclusion

The Maxwell model and its many variants are based on analysing steady-state
heat flow over an infinite domain to provide an expression for the effective thermal
conductivity of a nanofluid. The infinite domain assumption means the model is
only valid for very disperse fluids. The theory developed in the present paper fol-
lows a different approach in that it analyses the dynamic behaviour of a nanofluid
occupying a finite domain. Hence our model does not have the restriction of a
disperse fluid, but to make the analysis tractable is instead restricted by the re-
quirement that the particle has a much higher diffusivity and conductivity than
the fluid (which is generally the case). This approach leads to a novel, simple
analytical expression for the effective thermal conductivity. Further, the model
contains no unknown parameters, such as nanolayer properties. For volume frac-
tions ϕ > 1% it shows a greater enhancement than the Maxwell model and, most
importantly, lies well within the values of ke measured via numerous experiments
up to high concentrations.
The variations that have been applied to the Maxwell model could also be ap-

plied to the present model. However, these modifications were motivated by the
fact that Maxwell underpredicts the thermal conductivity. The present model,
which predicts much higher conductivity suggests that perhaps these modifica-
tions are unnecessary. Put another way, the inability of the Maxwell model to
capture the enhancement may be due to the limitations of that model rather than
any unusual nanoscale effect, such as the presence of nanolayers or aggregation.
There are many experiments indicating the dependence of ke on quantities such

as particle size, shape and material, additives, pH and temperature effects [25]
(and many suggesting a lack of dependence [25]). Our analysis indicates the
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effective thermal diffusivity depends solely (to within an error of the order αl/αp)
on ϕ and kl, whilst the effective thermal conductivity depends primarily on these
two parameters, with a small effect coming from the product of particle density
and specific heat, ρpcp. However, these conclusions rely on the high conductivity
and diffusivity ratios between the particle and base fluid which may not always
be true. Organic or ceramic nanoparticles typically give lower values. When the
difference between the particle and liquid thermal properties is not so large then
other effects will enter into the expressions for conductivity and diffusivity. This
could explain the dependence on other system properties mentioned above.
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