
Research Article
Voice Quality Modelling for Expressive Speech Synthesis

Carlos Monzo,1 Ignasi Iriondo,2 and Joan Claudi Socoró2

1 Computer Science, Multimedia and Telecommunication Studies, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou 156,
08018Barcelona, Spain
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Thi paper presents the perceptual experiments that were carried out in order to validate the methodology of transforming
expressive speech styles using voice quality (VoQ) parameters modelling, along with the well-known prosody (𝐹

0
, duration, and

energy), from a neutral style into a number of expressive ones. The main goal was to validate the usefulness of VoQ in the
enhancement of expressive synthetic speech in terms of speech quality and style identific tion. A harmonic plus noise model (HNM)
was used to modify VoQ and prosodic parameters that were extracted from an expressive speech corpus. Perception test results
indicated the improvement of obtained expressive speech styles using VoQ modelling along with prosodic characteristics.

1. Introduction

The research fields of automatic speech recognition (ASR)
and text-to-speech (TTS) synthesis benefit from expressive
speech, that is, speech with emotional content being this more
spontaneous, to make human-machine interactions more
natural, for example, in terms of emotion recognition [1, 2]
and voice transformation [3–5]. Voice quality (henceforth
VoQ) and prosody parameters (𝐹

0
, duration, and energy)

can be conveniently manipulated to represent or convey the
emotional content of speech in ASR or TTS applications
respectively [1, 3, 6–10]. In spite of the fact that VoQ has been
less explored than prosody, recent works propose using both
types of data to improve the acoustic modelling of expressive
speech [7–10]. Other studies relate perceived speech features
in emotional speech to VoQ parameters [11] and deal with
the association of phonation type (e.g., whispery voice) and
aff ctive speaking [12, 13].

In recent years, increasing interest has been focused on
the harmonic plus noise model (HNM) [14, 15] for speech
transformation [5] because high quality and versatility can be
achieved. The parameterisation of speech in both harmonic
and stochastic components allows for flexible manipulation

of VoQ over time and pitch scales, making it possible to
maintain a high degree of natural speech quality.

With the improvement in the emotional content repre-
sentation of speech and the availability of improved accuracy
techniques for its analysis and synthesis, interest in expressive
speech synthesis (ESS) has grown [3, 6, 10, 16–21]. Along with
the generation of expressive speech, it is necessary to evaluate
the different existing methodologies; there is no consensus
about which is the better one [22]: perceptual assessment
tests with forced choices, perceptual assessment tests with
free responses, or perceptual impact tests.

Thi paper presents the perceptual assessment carried
out to evaluate the proposed expressive speech styles trans-
formation methodology, based on prosody and VoQ mod-
elling using an HNM for the speech analysis and synthesis.
Prosody and VoQ modelling was conducted from a Spanish
expressive speech corpus with five expressive styles: neutral
(NEU), happy (HAP), sensual (SEN), aggressive (AGG), and
sad (SAD). This perceptual assessment was performed by
means of two evaluations. Th firs one was used for quality
evaluation, and the second one was used for the assessment
of the expressive styles identific tion. A forced-choice test
with fiv possible answers was performed to evaluate both the
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perceived quality and the identific tion of expressive style of
the utterances.

Th rest of this paper is organised as follows: Section 2
shows the speech material that was used, an expressive
speech Spanish corpus, and describes the corpus design, its
labelling, and its subjective evaluation. Section 3 deals with
the expressive speech style transformation methodology, the
HNM description, and the prosody and VoQ modelling.
Section 4 presents the perceptual assessment for the proposed
transformation methodology and a discussion of the results.
Finally, Section 5 contains the conclusions and an outline of
future work.

2. Speech Material

The speech material used during the expressive speech style
transformation experiments was an expressive speech corpus
devoted to ESS in Spanish, developed with a twofold purpose:
first, to be used for the acoustic modelling of emotional
speech (prosody and VoQ) and, second, to be the speech unit
database for our speech synthesiser.

2.1. Corpus Design. For the corpus design, we sought the
help of experts in audiovisual communication from the
Laboratory of Instrumental Analysis of the Autonomous Uni-
versity of Barcelona (LAICOM-UAB). Due to the LAICOM-
UAB experience in advertising, a large textual database of
advertisements, extracted from newspapers and magazines,
was available. Moreover, this database was organized in
different thematic categories: new technologies, education,
cosmetics, automobile industry, and travels. According to
the LAICOM-UAB experts, speech styles can be more easily
defin d according to the sentences’ features for each one
of these five categories [23], allowing the creation of an
expressive oral corpus with good coverage of simulated
expressive speech styles.

Th texts for each expressive style were read by a
professional female speaker in different recording sessions
(stimulated speech). It was assumed that stimulated speech
methodology, validated by [24], diminished the possibility
of modelling informal spontaneous speech utterances while
guaranteeing control of the recording conditions, the style
defin tion, and the text design.

It is important to mention that the speaker had previously
received training in the vocal patterns of each style. Th
phonetic features (segmental and suprasegmental) for these
vocal patterns were defin d by the experts of LAICOM-
UAB. Th use of texts from an advertising category aimed
to help the speaker to maintain the desired style through
the whole recording session. Therefore, the intended style
was not performed according to the speaker’s criteria for
each sentence, but all the utterances of the same style were
consecutively recorded in the same session following the
previously learned pattern.Thus, the speaker was able to keep
the required expressiveness even with texts whose semantic
content was not coherent with the style. Moreover, LAICOM-
UAB expert supervision was required through the recording

in order to avoid possible deviations from the predefined
style.

Five subject categories, selected from the advertising
corpus, were assigned to the expressive speech styles in the
following manner:

(i) new technologies: a neutral style (NEU) that transmits
a certain maturity,

(ii) education: a happy style (HAP) that generates a feeling
of extroversion,

(iii) cosmetics: a sensual style (SEN) based on a sweet
voice,

(iv) automobiles: an aggressive style (AGG) that transmits
hardness,

(v) travel: a sad style (SAD) that seeks to express melan-
choly.

A set of phrases for each category was selected by means
of a greedy algorithm [25], which made it possible to select
phonetically balanced sentences from each subcorpus. To
optimise the selection process, the required phonemes were
sorted according to the occurrence rate presented by [26],
which allowed the greedy algorithm to start by selecting
sentences that contained less probable phonemes. Moreover,
the selection of sentences similar to those previously selected
was penalised by the greedy algorithm. Finally, the size of the
corpus for each recorded expressive speech style is shown in
Table 1.

2.2. Speech Labelling. The speech was labelled using segmen-
tation and pitch marking. Segmentation is the identification
of the temporal boundaries for each phoneme, and the pitch
marks identify each period in the voice parts of the speech.
Segmentation is related to segmental duration, whereas pitch
marking is related to pitch or fundamental frequency (𝐹

0
).

Th alignment of the different phonemes, or segmenta-
tion, was carried out by means of forced alignment using
the HTK (http://htk.eng.cam.ac.uk/) tool and the available
phonetic transcription. Th resulting segmentation is used in
the extraction of acoustic segmental features related to both
prosody and VoQ and used for recognition and synthesis
purposes.

The pitch marking was based on the Robust algorithm for
pitch tracking (RAPT) of [27] and the application of the pitch
marks filtering algorithm (PMFA) developed by [28], which
improved the robustness of the final pitch marks.

2.3. Corpus Subjective Evaluation. A forced answer test
was designed with the question “What emotion do you
recognize from the voice of the speaker in this utterance?”
Thus, the expressive speech corpus was evaluated using a
subjective test, presenting a subset of 240 utterances to 25
listeners, that produced the confusion matrix [29] presented
in Table 2. The possible answers were the five styles of the
corpus (see Section 2.1) plus the additional option of do not
know/another (Dk/A) to avoid biasing the results in the
case of confusion or doubts between two options. The risk
of adding this option is that some evaluators may use it
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Ta ble 1: Number of sentences and duration, per expressive speech
style, for the expressive corpus.

Number of sentences Duration (min)
NEU 833 50

HAP 916 56

SEN 841 51

AGG 1048 84

SAD 1000 86

Ta bl e 2: Average confusion matrix (%) for the subjective test (the
maximum correct classific tion value is in bold).

(%) NEU HAP SEN AGG SAD Dk/A
NEU 86.4 1.3 3.6 5.3 0.7 2.7

HAP 1.9 81.0 0.2 15.6 0.1 1.2

SEN 4.7 0.1 86.8 0.0 5.7 2.6

AGG 1.8 14.2 0.1 82.7 0.1 1.1

SAD 0.5 0.0 0.6 0.0 98.8 0.1

excessively to accelerate the test [30]. However, this effect was
negligible in this test [9].

As a general result, the subjective test shows that all the
expressive styles achieve a high percentage of identific tion
(87.1% on average). SAD was the most highly rated (98.8%),
followed by SEN (86.8%) and NEU (86.4%) styles, and finally
AGG (82.7%) and HAP (81%).The confusion matrix shown in
Table 2 reflects the misclassifications. It reveals that the main
errors are produced in AGG (14.2% identifi d as HAP) and
HAP (15.6% identifi d as AGG). Moreover, NEU is slightly
confused with all the options and there is a certain level of
confusion of SEN with SAD (5.7%) and NEU (4.7%). Th
Dk/A option was hardly used, although it was more present
in NEU and SEN than in the rest of the styles. Detailed
information about the subjective evaluation is presented by
[9].

3. Expressive Speech Style Transformation

Thi section presents the expressive speech style transforma-
tion proposal. First of all, the harmonic plus noise model
(HNM) is shown as the main processing technique used
for speech analysis and synthesis. Secondly, prosody and
VoQ speech parameters involved during transformations are
described. Finally, the transformation methodology using
HNM together with prosody and VoQ parameterisation is
presented.

3.1. Harmonic Plus Noise Model (HNM). Harmonic plus
noise model (HNM) allows modification of the speech
prosody to generate a high quality signal. In this work, we
try to exploit the full capabilities of the HNM not only for
prosody changes but also introducing modifications in the
spectral content through VoQ parameters.

In HNM-based speech parameterisation, the voice signal
𝑥(𝑛) can be expressed as the addition of a deterministic
or harmonic component 𝑠(𝑛) and a stochastic or noise

component 𝑟(𝑛) [14] (see (1)). Th implementation used in
this paper was the pitch synchronous development carried
out by [31]:

𝑥 (𝑛) = 𝑠 (𝑛) + 𝑟 (𝑛) . (1)

Th lower spectral band ([0, 5000] Hz) was mainly mod-
elled as the addition of harmonically related sinusoids (𝑠(𝑛))
that characterised the voiced part of the speech. For each
signal frame, the deterministic part is represented by the
amplitudes, frequencies, and phases of the corresponding
harmonics and the analysis time instants. Th number of
harmonics depends on the pitch (or 𝐹

0
) value at each frame.

The harmonic part was synthesised through overlap-add
technique using triangular windows.

Unvoiced sounds and nonperiodic speech events were
modelled by the stochastic component (𝑟(𝑛)). Thi was
carried out by an autoregressive (AR) model in which both
the spectral and temporal fluctuations were represented by
constant-frame-rate, time-varying 𝑄-order linear predictive
coding (LPC) coeffici ts and variances.

With regard to the HNM analysis process, the harmonic
component estimation was based on [32] algorithm for spec-
tral peak extraction in the frequency domain, incorporating
a harmonicity constraint into the frequency-based cost func-
tion by using the Lagrange multipliers optimisation method
to guarantee the harmonicity of the estimated frequencies
[31].

Finally, in order to perform the expressive speech style
transformation process during the experiments, the prosody
and VoQ models were applied using the deterministic and
stochastic components. The modific tion was carried out
by manipulating frequencies, amplitudes, phases, and noise
component power according to the target prosody and VoQ
model requirements.

3.2. Prosody Parameters. The prosody parameters involved
during the transformation experiments were pitch or funda-
mental frequency (𝐹

0
), unit duration, and unit energy. These

were extracted from the expressive speech corpus presented
in Section 2 and modelled using a case-based reasoning
(CBR) system.

CBR is a useful data mining technique in the context
of ESS [21] that returns the case that best fits the target
requirements. In this way, expressive speech transformation
can be enhanced using a CBR system matched to a specifi
expressive corpus. CBR is based on the creation of a database
with different situations or cases which appeared in the
corpus (memory of cases). First of all, it is necessary to
identify the attributes (or features) that defin the cases for
the prediction of phone duration, phone energy, and the into-
nation contour. Then the training set is generated by joining
the prosodic parameters annotated in the speech corpus with
the prosodic features extracted from the linguistic analysis of
the text. A reduction of possible cases is achieved through
clustering of the classes that are represented by the same
attributes. The final aim of CBR is to map a solution from
previous cases to the target problem. Thus, the most similar
case is recovered from the database using the Minkowski
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metric to the selected attributes. Th refore, given the input
text, the predicted parameters are fundamental frequency
contour (𝐹

0
), energy contour, and segmental duration.

Th automatic extraction of prosodic features from text
was achieved by means of the linguistic analysis tool proposed
by [21] that carries out the phonetic transcription of the
text using SAMPA phonetic alphabet [33], annotating into-
nation groups (IG), stress groups (SG), words, and syllables.
Regarding IG and SG, an IG in Spanish is defined as a
structure of coherent intonation that does not include any
major prosodic break, and an SG is defined as a stressed
word preceded, if appearing, by one or more unstressed
words. With regard to prosodic breaks, they take place due
to pauses or signific nt infle tions of the 𝐹

0
contour. In terms

of segmental duration and energy modelling, the phone was
chosen as the basic acoustic unit, and its duration depends
basically on its identity and the context where it is placed, just
as occurs for energy in a similar way. Finally, SG was chosen
for the 𝐹

0
contour modelling, incorporating the influence of

the syllable and the pitch structure at IG level by means of the
concatenation of SG contours.

3.3. Voice Quality Parameters. The VoQ parameters involved
in the transformation experiments were already used and
analysed in previous studies in which their usefulness for
expressive speech discrimination was demonstrated [9, 10,
13, 34]. Thus, the following subset of VoQ parameters was
considered for the expressive speech styles transformation
experiment presented in this work.

(i) Jitter and shimmer describe the cycle-to-cycle
variations of the fundamental period (inverse of
the first harmonic’s frequency) and the waveform
amplitude, describing frequency and amplitude
modulation noise, respectively.
The e parameter defin tions were modifi d from
the methodology used in tools like Praat [35] or the
multidimensional voice program (MDVP) (http://
www.kayelemetrics.com/index.php?option=com pr-
oduct&Itemid=3&controller=product&task=learn
more&cid[]=56) in order to cancel prosodic interfer-
ence in their measurements [34].

(ii) Harmonic-to-noise ratio (HNR) describes the energy
ratio between the HNM harmonic and stochastic
components. The harmonic part energy is computed
by the sum of the squared amplitudes of all the
harmonics, while, for the stochastic part, the energy
depends directly on the noise variance.

(iii) Hammarberg index (HammI) is define as the ratio
between the maximum energy in the 0–2000-Hz
and the 2000–5000-Hz frequency bands. Then this
parameter is computed with the maximum squared
amplitude of the harmonics on each respective band
of the HNM harmonic component.

(iv) Relative amount of energy in the high- (above
1000Hz) versus the low-frequency range of the
voiced spectrum (pe1000): this parameter is com-
puted with the squared amplitudes of the harmonics

within high and low frequency bands of the HNM
harmonic component.

3.4. Transformation Methodology. Thi section describes the
proposed expressive speech transformation methodology. It
is based on the previous work carried out by [10], where an
initial strategy for the modification of VoQ together with
prosody was proposed, using HNM for speech analysis and
synthesis, to improve the perception of the transformed
speech. Despite the benefits of using VoQ in combination
with prosody reported in that work, a deeper analysis of
the transformation methodology was considered necessary
from two points of view: (i) to evaluate the identification rate
improvement of the resulting transformed expressive speech
and (ii) to analyse the resulting speech quality.

Initial experiments were conducted using Pitch syn-
chronous overlap and add- (PSOLA-) based TTS to per-
form the VoQ modifications [34]. Thi algorithm is simple
and straightforward when pitch, energy, and duration are
modifi d, but some problems arise when spectral-based VoQ
parameters need to be modifi d. The efore, for the new
experiments, the HNM was chosen as the tool for modifying
and synthesising speech signals because of its flexi ility,
allowing such spectral modifications.

As shown in Figure 1, the proposed block diagram for
the expressive speech styles transformation methodology
is divided into three main parts. First, HNM analysis and
resynthesis blocks extract the original speech information
and regenerate it when the HNM parameter transforma-
tion is performed. Second, prosody and VoQ are predicted
through the use of a prosody and VoQ models, respectively.
Prosody is predicted by means of CBR by obtaining the
target information for each phoneme: 𝐹

0
contour, energy

contour, and segmental duration. The VoQ is modelled by
using transformation rules, extracted from the analysis of
VoQ parameters in the expressive speech corpus presented in
Section 2, by means of mean (𝜇) and standard deviation (𝜎)
parameters manipulation. Finally, the speech transformation
is carried out, based on the results of the HNM analysis and
the prosody and VoQ models.

Several considerations must be made to determine which
parameters and their values should be involved in the trans-
formations. For the prosody modifications, all of the param-
eters were involved in all of the transformations. However,
the selection of the VoQ parameters and the corresponding
values to be used during the transformation was based on
the work of [2, 10, 13, 34] in which the following aspects were
considered:

(1) the results of previous studies about the use of VoQ
parameters in the discrimination of expressive speech
styles,

(2) an exhaustive classific tion experiment to obtain
different configur tions for all parameters and expres-
sive styles,

(3) descriptive statistics calculated for all expressive styles
of the corpus and all involved VoQ parameters.
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Figur e 1:A block diagram for the proposed expressive speech styles transformation methodology.

Prosody modifications use the information about the
original utterance and about the target from CBR predictions
(see Section 3.2), so a multiplicative transformation factors
among original and target parameters values were calculated
and the modifi ations were performed. Th modifi ation of
segmental durations and 𝐹

0
was carried out on the HNM

parameters according to the work of [31]. Nevertheless,
energy modific tion was performed directly on the utterance
audio samples by multiplying each sample by the correspond-
ing multiplicative transformation factor [21].

With regard to VoQ parameter modific tion, both means
and standard deviations of parameters values, predicted from
the corpora presented in Section 2, were modified according
to (2), obtaining the target VoQ value (VoQ

𝑡
). For a given

VoQ parameter, the mean (𝜇) modification was carried out by
means of the original mean (𝜇

𝑜
) subtraction (corresponding

with the mean value for the expressive speech style) from the
original parameter value (VoQ

𝑜
) and, finally, the target mean

(𝜇
𝑡
) for this parameter was added (corresponding with the

mean of the target expressive speech style). Regarding the
standard deviation (𝜎), a multiplicative transformation factor
per VoQ parameter and target expressive style, calculated as
the ratio between the target (𝜎

𝑡
) and the original standard

deviation (𝜎
𝑜
), was used in order to vary the intensity

of the current parameter. In order to obtain more robust
measurements, following the proposals of [3, 36], only vowels
were considered in these computations. This proposal for
the transformation methodology will let us evaluate the
usefulness of combining VoQ together with prosody with
the aim of improving the obtained expressive speech style
identification rate maintaining an acceptable speech quality:

VoQ
𝑡
=
𝜎
𝑡

𝜎
𝑜

⋅ (VoQ
𝑜
− 𝜇
𝑜
) + 𝜇
𝑡
. (2)

Th target VoQ values were obtained applying the pre-
sented transformation to the original VoQ parameters values
frame-by-frame. This VoQ parameter modific tion using the
HNM, performed according to the work of [37], is described
below.

(i) Jitter: only the frequencies for the HNM harmonic
component are modifi d. Once the 𝐹

0
curve is

obtained from the CBR prosody prediction module,

slow 𝐹
0

variations are removed to avoid interfer-
ence due to prosodic information, and the new 𝐹

0

microprosody variations related to jitter are applied.
New jitter variance is obtained by means of the
presented transformation methodology, and the final
pitch curve is computed adding the new jitter to the
previously extracted slow 𝐹

0
variations [34].

(ii) Shimmer: the modific tion of this parameter is
directly applied to the time-domain waveform. Th
same process used for jitter modific tion has been
applied to modify the shimmer. However, pitch syn-
chronous peak-to-peak amplitude variations curve is
used instead of 𝐹

0
contour information [34].

(iii) HNR: multiplicative transformation factors, calcu-
lated as the ratio between target and original HNR
values, are applied in the HNM harmonic and
stochastic components to guarantee the desired
energy ratio and the total energy after the trans-
formation. For each signal frame, the multiplicative
transformation factor in the harmonic part is the
same for all harmonic amplitudes, and, in the stochas-
tic part, it aff cts the noise variance. An additional
energy correction factor for both components is
fin lly applied to maintain the original frame energy
in the transformed signal.

(iv) HammI: only the maximum harmonic amplitude
of each frequency band (the 0–2000-Hz and the
2000–5000-Hz frequency bands) in the HNM har-
monic component is modifi d according to the target
parameter value (using a transformation factor mea-
sured as the quotient between the target and original
HammI values). An additional energy correction
factor, the same for each frequency band, maintains
the original frame energy during the transformation.
Th HNM stochastic component is not manipulated.

(v) pe1000: using the corresponding multiplicative trans-
formation factor calculated as the relation between
target and original pe1000 values, the ratio between
the HNM harmonic component energy of the
[0, 1000] Hz and [1000, 5000] Hz frequency bands is
modified. A multiplicative constant factor, specific for
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Ta ble 3: Voice quality selected parameters during neutral-target
transformations (“∙” when the parameter is selected and “—”
otherwise).

Jitter Shimmer HNR HammI pe1000
HAP — — — ∙ ∙

SEN ∙ ∙ ∙ ∙ ∙

AGG ∙ ∙ — ∙ ∙

SAD ∙ ∙ — ∙ ∙

each band, is applied to the harmonic amplitude val-
ues without any manipulation of the HNM stochastic
component. Th same global energy normalization
procedure used in previous parameters is finally
carried out.

Due to the tight relation among VoQ parameters, a
change in a parameter during the overall modification can
affect another one, especially when they model similar low-
level signal features (i.e., spectral bands). For example, a
change in HammI can produce a variation in pe1000 param-
eter as they measure energies in the same spectral bands. In
order to minimize the impact among them, and taking into
account the modific tion needs for each one, the following
order modific tion was proposed by [37]: (1) Jitter, (2)HNR,
(3) pe1000, (4)HammI, and (5) Shimmer.

Table 3 presents the VoQ parameters involved in each
transformation from neutral to the target expressive style.
Nevertheless, as was said previously, all parameters were
not involved during all the transformations, since the best
parameters identifying to each expressive speech style were
found out from previous conducted work in discriminative
analysis, expressive speech styles classific tion using VoQ,
and descriptive statistics of corpus. Moreover, Table 4 shows
mean (𝜇) and standard deviation (𝜎) values for all VoQ
parameters extracted from the expressive speech corpus, used
during the VoQ transformation to calculate the target VoQ
parameters.

Different conclusions can be extracted from Tables 3
and 4. First, for all transformations, the HammI and pe1000
parameters were used, controlling the tension effect in the
voice, showing a phonation effort or relaxation. For example,
HAP and AGG styles present values for these parameters that
show high energy in high frequency band, thus producing a
higher perceived vocal effort in the fin l speech. Nevertheless,
for SEN and SAD styles, the presented speech is more relaxed.
Second, jitter and shimmer parameters let us control the
quivering voice effect, and so their use is more remarkable
in SEN and SAD styles. Finally, the control of the amount of
noise which appeared in the speech is carried out by means
of HNR parameter, useful during SEN style identific tion.

To sum up, this prosody and VoQ transformation
methodology entails modifying the HNM parameters, that
is, frequencies, amplitudes, and phases for the harmonic
component and variance for the stochastic component.
Therefore, two kinds of transformations were carried out.
Th fi st one, the prosody modific tion, was guided through
the CBR system so that it affected only the prosody; thus,

the frequencies, amplitudes, and phases of the HNM were
modifi d to produce the required 𝐹

0
contour, energy contour,

and segmental duration. The second one, the VoQ parameter
modific tion, also modifi d the HNM parameters, but in the
specifi way previously described and briefly summarized
below.

Th jitter parameter also controls the𝐹
0

contour; this way,
the frequencies, amplitudes, and phases were also affected
because vocal tract observations are highly related to the
pitch frequency. In the shimmer parameter case, all the
modific tions were carried out directly on the time-domain
speech signal [34]. Th HammI and pe1000 parameters are
related to ratios or approximations of energy in different
frequency bands of the harmonic component. Therefore, the
HNM amplitude vector was modifie . To vary the HNR
parameter, both HNM harmonic and stochastic components
were modified by manipulating the harmonic amplitudes and
stochastic variances, respectively. For HammI, pe1000, and
HNR parameters, the variation multiplicative transformation
factor was distributed between two spectral bands (in the
HNM harmonic component for HammI and pe1000) or both
components (the HNM harmonic and stochastic components
for HNR), ensuring that speech energy was preserved when
the transformation was performed.

4. Perceptual Assessment

In the work of [10], the utility of using a combination of
prosody and VoQ for ESS was demonstrated by means of
a comparison mean opinion score (CMOS) [38] perceptual
test. However, the quality of the fin l transformed expressive
speech and, especially, the identification rate for each of these
styles were not studied. In this section, how the parameter
modific tion affects the the quality of the generated speech
and the identific tion rate obtained for each target style
are analysed. Thus, the transformations and the proposed
methodology are validated.

4.1. Experiment Description. With the aim of analysing the
effectiveness of the proposed transformation, a comparison
between modifying prosody and VoQ parameters using the
HNM technique was conducted in the following experi-
ments, in which the quality of the generated speech and the
target expressive styles identific tion rate were evaluated (see
Sections 4.2 and 4.3, resp.). Th results were compared by
taking into account different configur tions of parameters
to be transformed: modifying only prosody, prosody plus
jitter and shimmer, and, finally, prosody plus the combination
of VoQ parameters for each expressive style. Each of the
configur tions under testing is described next, indicating the
name that identifi d them during the evaluations.

(i) “Natural”: natural speech. A set of utterances was
directly extracted from the corpus for each expressive
style.

(ii) “ResHNM”: HNM-based direct resynthesis of the nat-
ural utterances for each expressive style. The process
of analysis and synthesis was carried out from corpus
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Ta bl e 4: Mean (𝜇) and standard deviation (𝜎) values for all VoQ parameters extracted from the expressive speech corpus.

𝜇/𝜎 Jitter Shimmer HNR HammI pe1000
NEU 0.21/0.36 0.06/0.19 25.68/4.28 28.37/7.68 −14.35/6.41

HAP 0.24/0.30 0.03/0.06 24.06/5.26 25.12/7.81 −9.29/8.96

SEN 0.49/0.74 0.11/0.22 24.30/6.09 30.98/8.08 −16.08/7.58

AGG 0.14/0.12 0.03/0.06 23.45/4.45 23.69/7.31 −6.15/8.80

SAD 0.10/0.08 0.12/0.20 29.38/6.58 35.77/8.78 −16.97/8.80

examples without applying any modific tion to the
speech parameters.

(iii) “HNMPro”: prosody transformation based on the
HNM. Th utterances, originally expressed in a neu-
tral expressive style, were transformed using the
prosody models.

(iv) “HNMProJiSh”: transformation of prosody, jitter, and
shimmer, based on the HNM. The e parameters were
transformed from the prosody models and by using
the transformation values for jitter and shimmer,
learned from the expressive corpus to transform the
utterances originally expressed in a neutral expressive
style. This configuration is interesting because this
transformation can be conducted by means of both
HNM-based and other synthesis algorithms-based
TTS (e.g., PSOLA).

(v) “HNMProVoQ”: prosody and full VoQ modifica-
tion based on the HNM. Th utterances, originally
expressed in a neutral expressive style, were trans-
formed using the prosody models and the VoQ
parameter configur tions (see Section 3.4) into the
target expressive style under testing.

First, the speech quality was evaluated using utterances
transformed from a neutral subcorpus into happy (HAP),
sensual (SEN), aggressive (AGG), and sad (SAD) expressive
styles. The evaluation was carried out by means of a mean
opinion square (MOS) test [38] with five possible answers,
with a score between 1 and 5, in which 5 was the maximum
quality and 1 was the minimum: “Excellent” (5), “Good” (4),
“Fair” (3), “Poor” (2), and “Bad” (1). The results analysis was
performed by grouping the five kinds of configur tions into
two sets:

(1) natural speech (“Natural”) and resynthesised speech
(“ResHNM”), which had the maximum reference
values because they were real cases (natural) and also
represented the best possible results that a TTS system
could obtain using the HNM algorithm (resynthesis).

(2) The proposed transformation methodology with the
configuration of interest (“HNMProVoQ”) was com-
pared with the rest of the configurations.The different
configur tions for the transformation were (i) only
prosody modific tion (“HNMPro”), (ii) a combina-
tion of prosody and only jitter and shimmer VoQ
parameters (“HNMProJiSh”), and (iii) a combination
of prosody and the selected VoQ parameter for each
transformation (“HNMProVoQ”). Hence, the quality
changes of the HNM algorithm were evaluated.

Second, we performed the target expressive speech style
identific tion assessment, destined to validate the proposed
expressive speech transformation methodology. This was
carried out through a test with 5 possible answers, with
4 of them corresponding to the target expressive styles
(happy, sensual, aggressive, and sad) and a fifth category
corresponding to “Others.” This fifth category was created
without being assigned to any particular style to avoid an
opinion bias towards the rest of the options when the answer
was not clear or when no evaluated style was perceived. In an
analogous way, the configur tion of interest “HNMProVoQ”
was also compared with the rest of the possible options in
order to point out the possible differences in the modifi d
speech parameters (prosody and VoQ).

The comparison of prosody and VoQ parameter modi-
fic tion strategies is interesting from the point of view that
the variations of quality for a certain identification rate of
the expressive speech styles can be known, and two main
situations can be considered. On one hand, in the case of
achieving high quality and a low identific tion rate, a situa-
tion can be determined in which it is necessary to improve the
expressive styles models (this could be performed using more
or diff rent parameters). On the other hand, if the quality
is low and a high identific tion rate is obtained, the speech
generation algorithm will be taken into account by analysing
whether it can support the desired parameter transformation
and whether this transformation must be so demanding that
it causes quality degradation (in this case, we could work on
modifying the transformation needs).

Th quality evaluation and the expressive speech styles
identific tion test were carried out by answering two ques-
tions for the same presented utterance: “Assess the global
audio quality” for the speech quality evaluation and “Indicate
which expressive style is transmitted by the audio” to identify
the transmitted expressive style. For these evaluations, 100
utterances were generated, containing the same number of
examples for every configur tion and expressive style. The
total number of listeners was 17, with ages ranged between
24 and 50 years old. There were 13males and 4 females. Out
of the group, 8 of them were experts on speech technologies.

With regard to the test utterances, they were selected
according to the type of the conducted test and the applied
configuration. For “Natural” and “ResHNM,” five utterances
for each subcorpus were selected. Regarding their character-
istics, a variety of intonation patterns were used by selecting
declarative, interrogative, and exclamation expressions, with
a mean duration of 4.5 seconds for NEU, 4 seconds for HAP,
3.4 seconds for SEN, 3 seconds for AGG, and 4.5 seconds



8 Th Scientifi World Journal

M
O

S
5

4

3

2

1

Happy Sensual Aggressive Sad

(a) Natural

M
O

S

5

4

3

2

1

Happy Sensual Aggressive Sad

(b) ResHNM

M
O

S

5

4

3

2

1

Happy Sensual Aggressive Sad

(c) HNMPro

M
O

S

5

4

3

2

1

Happy Sensual Aggressive Sad

(d) HNMProJiSh

M
O

S

5

4

3

2

1

Happy Sensual Aggressive Sad

(e) HNMProVoQ

Figur e 2: Quality MOS test results for the configur tions of “Natural,” “ResHNM,” “HNMPro,” “HNMProJiSh,” and “HNMProVoQ.”

for SAD. For the rest of tests, the same NEU utterances
were transformed into the diff rent expressive speech styles.
Detailed information about the selected sentences is pre-
sented by [37].

Next, the obtained results and conclusions are presented
for every configur tion and expressive style. The results for
the quality assessment are shown first (Section 4.2), and
the subjective identific tion results are presented second
(Section 4.3).

4.2. Subjective Quality Assessment. Th boxplots [39] of
Figures 2(a) and 2(b) show the quality assessment results
for reference configur tions: “Natural” (see Figure 2(a)) and
“ResHNM” (see Figure 2(b)). Th high quality of these utter-
ances “Excellent” can be observed; only the sad style, with
HNM-based resynthesis, presented certain result dispersion.

These results are consistent with the configurations that were
used; due to this, in general terms, HNM-based synthesis
highly depends on the resulting speech parameterisation, so
it is more aff cted by pitch marks than other TTS-based
algorithms like PSOLA, as well as the HNM parameter
estimation of the deterministic and stochastic components.
For example, in the case of the sad style (see Figure 2(b)), its
specific acoustic characteristics (e.g., tremulous voice) could
lead to more analysis inaccuracies, causing more synthesis
artefacts.

Once the reference configur tions were analysed
(“Natural” and “HNMPro”), the results for the evaluated
transformation-based configuration were studied (see
Figures 2(c)–2(e)) with the fin l goal of going into a deeper
analysis of the transformation methodology of interest
(“HNMProVoQ”).
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Ta bl e 5: The confusion matrix (%) and 𝐹1measures in the expres-
sive speech styles identific tion for the reference configur tions
(“Natural” and “ResHNM”) and HNM transformation configura
tions (“HNMPro,” “HNMProJiSh,” and “HNMProVoQ”).

(%) HAP SEN AGG SAD Others
Natural

HAP 94.1 0.0 5.9 0.0 0.0
SEN 0.0 100.0 0.0 0.0 0.0
AGG 0.0 0.0 100.0 0.0 0.0
SAD 0.0 9.4 0.0 90.6 0.0
(𝐹1) 0.97 0.96 0.97 0.95 —

ResHNM
HAP 87.1 0.0 11.8 0.0 1.2
SEN 1.2 95.3 1.2 2.4 0.0
AGG 1.2 0.0 98.8 0.0 0.0
SAD 0.0 11.8 0.0 88.2 0.0
(𝐹1) 0.92 0.92 0.93 0.93 —

HNMPro
HAP 30.6 3.5 17.6 28.2 20.0
SEN 1.2 31.8 9.4 40.0 17.6
AGG 35.3 1.2 21.2 23.5 18.8
SAD 2.4 18.8 10.6 41.2 27.1
(𝐹1) 0.36 0.41 0.27 0.35 —

HNMProJiSh
HAP 30.6 3.5 16.5 27.1 22.4
SEN 3.5 30.6 4.7 36.5 24.7
AGG 32.9 2.4 18.8 22.4 23.5
SAD 4.7 17.6 1.2 58.8 17.6
(𝐹1) 0.36 0.40 0.27 0.48 —

HNMProVoQ
HAP 34.1 3.5 25.9 14.1 22.4
SEN 0.0 40.0 5.9 34.1 20.0
AGG 23.5 2.4 31.8 16.5 25.9
SAD 3.5 20.0 1.2 64.7 10.6
(𝐹1) 0.42 0.48 0.39 0.56 —

First, the quality values for “HNMPro” (see Figure 2(c))
is presented. A certain quality degradation due to the appli-
cation of expressive prosody on the neutral utterances could
be observed. Notice that the quality value is centred on “Fair.”

The resulting MOS values for the evaluation of “HNM-
ProJiSh” configur tion are analysed in Figure 2(d). The qual-
ity value for the HNM was maintained practically constant at
the median (“Fair”), except for the aggressive case (“Poor”).
Then the HNM clearly becomes a good option in the
transformation of expressive speech styles because it off rs an
acceptable fin l quality despite the parameters modific tion.

Finally, we evaluated the quality obtained by the “HNM-
ProVoQ” configur tion (see Figure 2(e)) in which the VoQ
transformations were matched to the necessities of each target
expressive speech style (see Table 3). Figure 2(e) shows how
the quality is maintained between acceptable values (“Fair”),
as occurred in the configur tion of the HNM in which only
the prosody transformation was involved (see Figure 2(c)).

Thi fact shows that the HNM makes it possible to introduce
VoQ transformations without decreasing the quality. It is
also notable that the quality for the happy, sensual, and
aggressive expressive styles increased with regard to the
transformation of prosody together with only jitter and
shimmer (see Figure 2(d)). The e was a slight decrease in the
sad style, which had already occurred in the reference case
(see Figure 2(b)).

With these results, we can conclude that the VoQ trans-
formations could be used to improve the identification rate of
expressive styles (see Section 4.3) during the speech synthe-
sis, maintaining the speech quality regarding the well-known
prosody modelling. Nevertheless, excess signal manipulation
can bring about negative effects too, decreasing the quality.
For example, in the case of the sad expressive style, as it is
shown in Section 4.3, the best interclass identific tion rate
was achieved (see Table 5), although it was not the style with
the best perceived quality (see Figure 2(e)).

4.3. Subjective Expressive Speech Style Identification. Once
the quality assessment results have been analysed and dis-
cussed, we will analyse the results that were obtained from
the expressive speech style identific tion subjective test. In
this case, the aim was to evaluate the identific tion degree of
the synthesised style that was achieved using the proposed
method, related to the main goal of this work of validating the
usefulness of VoQ in the enhancement of expressive synthetic
speech for style identific tion. We have to remember that
the transformation was carried out from the neutral style
into another style (happy, sensual, aggressive, and sad). In
the performed test, listeners could choose any of these four
expressive styles and the option “Others,” which avoided
biasing the measure towards any of them.

Th subjective identific tion results are presented by
means of a confusion matrix (%) [29] and F1 measures
[40]. First, the confusion matrix informs us about how good
the identific tion was, and above all, it lets us detect any
existing confusion among the expressive styles. Second, the
F1measure gives a more real and compact vision about how
good the identific tion was, taking into account both the
correct classified cases and the existing confusion among
styles. This measure is the harmonic mean of precision and
recall. For a studied style, the precision is defin d as the
number of cases correctly classified divided by the total
number of cases classifi d in that style. Th recall is defin d
as the number of cases correctly classifi d divided by the
total number of existing cases that should have been classifi d
within that class.

As was done for the quality evaluation, first, the results
obtained for natural speech (“Natural”) and HNM-based
resynthesis (“ResHNM”) are shown (see Table 5). It was
observed that both configur tions produced similar results,
as was expected. Some confusion existed between happy-
aggressive and sensual-sad styles. The F1values were greater
than 0.92 for all of the expressive styles in both configurations.

Th next step was analysing how the neutral style trans-
formation into the target expressive styles affected the identi-
fic tion of the desired styles (see Table 5). First, we wanted to
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Ta bl e 6: 𝐹1 measure improvement percent (%) using “HNM-
ProVoQ” compared with “HNMPro” and “HNMProJiSh” transfor-
mation configur tions.

(%) HAP SEN AGG SAD
HNMPro 16.7 17.1 44.4 60.0

HNMProJiSh 16.7 20.0 44.4 16.7

study the limitation of each transformation and the improve-
ment of the perception of the expressive styles from the use
of VoQ parameters when using only prosody, correspond-
ing to the fi st transformation attempt from the prosody
parameters (“HNMPro” configur tion). Second, the results
for combining prosody together with VoQ are presented in
the “HNMProJiSh” (prosody with jitter and shimmer) and
“HNMProVoQ” (prosody and the proposed configur tion
for VoQ parameters) configurations. The improvement of
F1 values using the interest configur tion (“HNMProVoQ”),
regarding the rest of HNM transformation configur tions
(“HNMPro” and “HNMProJiSh”), is summarised in Table 6.

Th results obtained with the firs configur tion, in
which the speech signals were only modifie to achieve the
predicted prosodic parameters using the HNM algorithm
(“HNMPro”), are shown in Table 5. Notice that the iden-
tification F1 values have declined dramatically from their
references for all styles. The sensual style case obtained the
best result with regard to the rest of styles (𝐹1 = 0.41).

Once the results for the prosodic transformation were
reviewed, the inclusion of jitter and shimmer VoQ parameters
was evaluated (“HNMProJiSh”). In this case, the results (see
Table 5) show that the identific tion rate remained stable for
the HNM (except for the sad style, which was improved
to a value of 𝐹1 = 0.48). Although the identification
levels were still low, the results were better for the sad style
(𝐹1 = 0.48), coinciding with the maximum quality for
this configur tion (see Figure 2(d) in Section 4.2), possibly
because of the stability demonstrated by the HNM during the
parameter transformation; each style could be characterised
without adding dispersion.

Th last configur tion to be analysed is “HNMProVoQ,”
in which both prosody parameters and selected VoQ configu
rations were involved during the transformation of expressive
speech styles (see Table 5). Th fi st observation to emphasise
is that we obtained the best results (see Table 6) with regard
to the rest of configur tions involving parameter transfor-
mations (“HNMPro” and “HNMProJiSh”). The second thing
to note is the good result obtained for the sad style (𝐹1 =
0.56), followed by the sensual style (𝐹1 = 0.48). Thi is
particularly important if we take into account the existing
confusion between both styles in the reference (“Natural” and
“ResHNM”). The value obtained for the happy style (𝐹1 =
0.42) is very interesting too, especially because of the progres-
sion regarding the use of only prosody and jitter and shimmer.
Finally, the aggressive style yielded the worst absolute result
(𝐹1 = 0.39), although it yielded the highest increment in its
identific tion regarding “HNMProJiSh” configur tion (44.4%
according to Table 6).

Th main reason for the identific tion error is the existing
confusion between happy-aggressive and sensual-sad styles,
which already appeared in the reference values (“Natural”
and “ResHNM”). There is some general confusion towards
the sad and “Others” categories. Once the test was finish d,
the listeners could write their comments. From them, it was
observed that “Others” was in general related to the detection
of a neutral style (i.e., the source style). Therefore, a higher
modific tion for the parameters during the transformation is
necessary. Tha ks to the stability demonstrated by using the
HNM, both for the quality (see Figures 2(c), 2(d), and 2(e))
and the identific tion (see Table 5), the level of parameter
transformation could be increased. Moreover, according to
listener observations, the trend towards the transmitted style
identific tion using the semantic content of the utterance was
also detected (i.e., what is the sentence talking about?), which
caused a bias towards the wrong styles, especially in those
cases in which acoustic characteristics could not identify
them clearly (e.g., a whispering or quivering voice in the
sensual or sad styles, resp.).

As a conclusion, both from the quality and the iden-
tific tion perspectives, when the best identific tion rate
was achieved through the use of prosody together with a
combination of VoQ (e.g., aggressive and sad styles), the
quality levels went worse (see Figure 2(e) in Section 4.2).
However, when the signal manipulation was not so high,
the quality was maintained more constant (e.g., happy and
sensual styles), and the style identific tion improvement
was not so signific nt. Therefore, an agreement could be
necessary between the expected quality and the amount of
VoQ parameter modific tion needed for the identific tion
of the style. In order to achieve this, a more sophisticated
prediction of target VoQ parameters, similar to the one
conducted on prosody modelling, could be necessary.

5. Conclusions and Future Work

Th main aim of this work was to validate the usefulness
of VoQ in the enhancement of expressive synthetic speech
for style identific tion presenting an acceptable quality. Th
harmonic plus noise model (HNM) of expressive style trans-
formation based on prosody and voice quality modifica
tions was evaluated by means of a perceptual assessment
of speech quality and expressive speech styles identifica-
tion. With regard to this methodology, first, flexi le HNM
parameterisation was used to extract the fundamental speech
parameters that must be used during the performed prosody
and VoQ modifications. Second, the prosody parameters
were predicted by means of the CBR system and modified
using the HNM parameters and the acoustic waveform, being
a first attempt at the expressive speech style transformation.
Finally, once prosody was transformed, the VoQ parameters
were modified by varying the HNM parameters and the
acoustic waveform according to the available VoQ models. To
select which VoQ parameters should be modified, an analysis
of the best configurations was previously performed.

Th test for the perceptual assessment was carried out for
different configur tions, including natural speech and speech
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synthesis using the HNM: speech resynthesis, prosody mod-
ific tion, prosody plus jitter and shimmer modific tion, and,
finally, prosody together with the best VoQ configurations
using the HNM (the configur tion of interest).These analyses
resulted in an acceptable speech quality during the transfor-
mation. In addition, the expressive styles identific tion rate
was directly related to the results of the quality test, which
reported the best results for the configur tion of interest.

To summarise, from the perceptual assessment of both
the quality and identific tion experiments, the following
conclusions can be drawn about the expressive speech styles
transformation viability. First, the use of speech analysis
and synthesis by means of the HNM made it possible to
achieve good quality and speech manipulation control during
the transformations of both prosody and VoQ parameters.
Second, the combination of prosody and VoQ parameters
produced signific nt improvements in the expressive speech
styles identific tion rate compared with only using prosody
and a subset of VoQ parameters. Finally, from the comments
of listeners during the test, it was observed that the semantic
content of utterances could be a limitation for the expressive
speech style identification.

In spite of the good results, more work is needed. A better
model for VoQ is necessary, as one for the prosody already
exists, in order to improve the model for each expressive
speech style contained in the corpus. Moreover, in this
way, distinguish pairs of expressive styles with identific tion
difficulties let us improve their identific tion rate.

Finally, the results obtained both for quality and iden-
tific tion encouraged us to continue with the modelling of
prosody and VoQ using HNM speech analysis and synthesis.
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