
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61
62
63
64
65

EuCNC2016-SoftDeflnfra 1570256899

On the Benefits of Wireless SDN

in Networks of Constrained Edge Devices

August Betzler*, Ferran Quer*, Daniel Camps-Mur*, Ilker Demirkolt, Eduard Garcia-Villegast
*i2CAT Foundation, Barcelona, Spain

t Universitat Politecnica de Catalunya, Barcelona, Spain
{august.betzler, ferran.quer, daniel.camps }@i2cat.net, {ilker.demirkol,eduardg}@entel.upc.edu

Abstract-In this paper we study the benefits of applying
Software Defined Networking (SDN) to control forwarding in
a network of constrained wireless edge devices. The proposed
architecture is applicable to dense Small Cell deployments
featuring wireless backhauling and edge computing capabilities,
or to wirelessly connected sensor nodes following the fog com
puting paradigm. The paper introduces a novel path forwarding
policy based on SDN, and presents an experimental evaluation
demonstrating the benefits of the proposed policy to mitigate
external interference, achieve flow balancing, and cope with CPU
constrained devices.

I. INTRODUCTION

Applying Software Defined Networking (SDN) architec
tures to wireless mesh networks is a developing area of
research that attempts to mitigate some of the shortcomings
encountered in traditional wireless mesh network solutions
[1]. Despite the performance penalty incurred by multi-hop
forwarding, wireless mesh networks continue to offer an
interesting value proposition due to their reduced costs.

Recently, two novel applications are reviving the interest on
wireless mesh networks, while posing new challenges. First,
the deployment of ultra dense networks of outdoor Small Cells
to cope with the growth in mobile data requires affordable
backhaul technologies. Second, the fog computing paradigm
[2] proposes to transition from cloud based loT architectures,
to loT architectures where intelligence is pushed to the edge,
which requires more flexible and reliable networking solutions.
Wireless mesh networking offers a viable solution to both
paradigms.

In this paper, we study the benefits of applying SDN to
wireless mesh networks of constrained edge devices, that
is, devices with very limited processing power and memory
capacities. In particular, we build upon the SDN architecture
proposed in [3], and propose two novel SDN forwarding
policies for multi-radio mesh nodes. The proposed policies
consider both network state and available computing resources
in the network elements, and have been evaluated in an testbed
composed of multi-radio Raspberry Pi B+ devices (RPi).

Related to our work, [5] proposed a hybrid architecture
comprising a distributed OLSR daemon to configure the in
band control network and a centralized SDN controller to con
figure the data plane, while demonstrating an Internet gateway
balancing policy. The authors in [4] proposed an architecture
for wireless backhauling, where the SDN controller operates
on an abstracted view of the mesh network and is only used

1

... ,----------------,
O

Agent
Node

_____ w���ss -----t

Gateway
Interface
Wireless

Connection ".. ".""/

tt:"''''
...

Fig. 1: General view on our system model: the wireless mesh
network provides backhaul connectivity for external access
traffic via gateway interfaces.

to configure end-to-end flows. To the best of the authors'
knowledge this is the first paper to propose forwarding policies
that consider both network and available computing resources
enabled by specific OpenFlow wireless extensions.

This paper is structured as follows. Section II introduces
the system model and describes our SDN forwarding policy.
Section III provides an experimental evaluation that illustrates
the benefits of the proposed forwarding policy in scenarios
with external and internal interference, and in a network fea
turing CPU constrained devices. Finally Section IV concludes
the paper and discusses future work.

II. SYSTEM DESIGN

A. System Model

Fig. 1 depicts the system model considered in this paper,
consisting of a set of nodes forming a wireless mesh net
work using unlicensed spectrum. Following the architecture
presented in [3], nodes contain a wireless port to represent
each potential one-hop neighbor in the wireless mesh.

Two types of nodes are considered in the system: So called
agent nodes serve as entry points for access traffic, while also
acting as relay nodes in the network. Once traffic enters the
wireless network via one of the agent nodes, it is forwarded
to one of the gateway nodes where the traffic is bridged over
to the wired network. It is considered that a flow can use any
of the gateways to reach the wired network.

Each end-to-end flow in the mesh network, i.e. between
agent and gateway, is defined using a unique identifier. Thus,

Input
Ports

Assign /Identify
flow b Ta

Incomi Traffic

Match
flow IDs

Fz

ITake output I decision

Packet F3 Forwarding
nalysis Rule Set I----t---.-{

Output
Ports

Fig. 2: Abstraction of an agent node and its forwarding
mechanism that is capable of distinguishing between up to
N different data flows.

access traffic entering the mesh network through an agent

node is assigned to an end-to-end flow. Our architecture allows
for N different unidirectional flows in each agent node, thus
resulting in up to N x A end-to-end flows in the mesh network,
where A is the number of agent nodes. Hence, N allows to
trade-off flow granularity with forwarding table size.

When data packets are received by an agent node, the node
matches the flow identifier and looks up the forwarding rules to
decide the corresponding output interface. An abstract view of
an agent node and the implementation of the packet forwarding
process is given in Fig. 2. The SDN controller is responsible
for determining the paths that the flows will follow throughout
the wireless network and for installing the forwarding rules on
the network nodes accordingly. For this purpose the controller
runs an algorithm that consists of three main steps:

1) Bootstrapping: Upon initiating the network, the SDN
controller installs an initial set of forwarding rules on the
agent nodes for each flow. An arbitrary routing policy,
such as minimum hop-count or WCETT [6], can be used
for this purpose.

2) Network state monitoring: The SDN controller collects
statistic reports from the agent nodes, which include
information about their wireless ports, internal state
(e.g. CPU load), and data flows traversing them. This
information is used to get a holistic view of the system,
and to trigger corrective actions if necessary.

3) Flow reallocation policy: If the SDN controller detects a
precarious network state (e.g. link congestion), it reacts
by applying a data flow reallocation policy. In this paper
two such policies are introduced and evaluated.

B. Information available at the SDN controller

Each of the nodes in the network maintains information
about its internal state, its wireless network interfaces and
ports, and the observed network environment. The set of
statistics gathered by each agent node is shown in Table I.

The SDN controller periodically polls each node for statis
tics. Nodes respond to such a request with statistic response
packets that contain all the statistics gathered over the last 16
secondsl. The SDN controller calculates a moving average of

I up to 8 measurements taken every 2 seconds are buffered until receiving
the statistics request

2

TABLE I: Overview of the Statistics Gathered by Each Node

Statistic Explanation
Intefface Statistics:

Channel Usage Occupancy of a wireless channel (0 :::; u :::; 1)
Channel Number Operational channel of a wireless interface
Port Statistics:
Signal Strength RSSI value measured by a wireless interface
TxIRx Bitrate Physical (PHY) Data rate used over a certain link

Device Statistics:
CPU Load A node's CPU load in %

Flow Statistics:
TxlRx Packets Number of packets transmitted via a flow
TxIRx Bytes Bytes transmitted via a How

11001011
11000011
00110000

1= 00110000
10001111
00001101
11001011
10001111

/5, ch11

Fig. 3: Illustration of the SDN controller's view on the topol
ogy (left) and the corresponding interference matrix generated
by the SDN controller(right).

the gathered values, stores them in a database, and processes
the data in order to obtain a view of the network state that is
used by the decision taking algorithm to manage the network
data plane. For the reallocation algorithm to trigger and to start
data flow redirections, it is necessary that a critical network
state is observed.

C. Flow redirection policies

In order to be able to take meaningful path forwarding de
cisions, the SDN controller is continuously analyzing whether
a flow reallocation would improve the overall network state.

The used network model builds upon the following as
sumptions. First, data flows are always established between
an agent node and a gateway, traversing the network over
one or several hops. Second, each wireless hop between two
nodes a and b is composed of two independent, unidirectional
links; one link that originates in node a and terminates in
node b, and vice-versa. Since statistics of the wireless links
are collected by both endpoints of a wireless connection, the
controller has an independent view from each side of each
link, which is important for the detection of asymmetric links
and to be able to create asymmetric routes between two nodes.
Further, it is assumed that links of neighboring nodes using
wireless interfaces that are operating on the same channel
interfere each other. Fig. 3 illustrates an example network
model in the SDN controller representing a network of 4
nodes, and the corresponding interference matrix I, identifying
interfering links. The controller computes the interference
matrix by determining which links are on the same channel in
a node's neighborhood, and assuming that data transmission
can interfere nodes up to 2 hops away.

1) Load Balancing Policy: The goal of the load balancing
policy is to reduce the utilization level of individual links in
order to minimize congestion events. For this purpose the
controller monitors the load of individual links, and upon
measuring a utilization level above a configurable threshold,
Uthr, executes the following algorithm.

Let us start denoting the set of links in the network model
kept at the SDN controller as 1: = {h, ... , lM}, and the
network state vector as ns = {Ul,"" UM p, which contains
the utilization levels of each link in the network, and is
maintained through the periodic statistic reports issued by the
nodes (see Table I).

Upon detecting a link li with a utilization level above
Uthr, the controller constructs the set F = {Fl' F2, ... , FT}
containing all flows that traverse the link li. Thus, the goal
of this policy is to reallocate some of the flows in F over
alternative paths in order to bring the utilization of all links
in the network, below Uthr.

To decide which flows to reallocate, the controller imple
ments a greedy heuristic whereby it starts considering the
flow Fj E F with the highest data rate. L�t us assume that
Fj traverses path Px, where Px,y = 1, WIth 1 � Y � M,
if ly E Px and 0 otherwise. A base network �tate can be
computed as nso = ns - I x UFj.", where UFj,,, IS the vector
containing the utilization level introduced by flow Fj on each
link of Px, and nso represents the estimated network state
without flow Fj. Notice that the controller can easily compute
UFo because it continuously measures the load introduced
by)�;ch flow and the data rate used in each link (see Table I).

As a next step, the controller computes the set P =

{ �A, P2, ... , PK} containing K candidate alternative paths
between the source and destination nodes of Fj. P is computed
using a K-shortest-path routing algorithm with the WCETT
metric [6], thus P already contains paths with low expected
utilization levels. In order to compare the candidate paths
in P, and select a new path Pnew to reallocate Fj, the
controller uses as metric the resulting network state when
flow Fj is allocated through each candidate path 11 E P,
computed as nsF. = nso + I x UFo I' which accounts for the I),
interference that this flow will cause throughout the network.
Consequently, the controller selects as alternative path, Pnew,
the one minimizing the worst case link congestion in the
resulting network state vector, i.e.:

Pnew = min max ns R l�I�K I

Finally, if the selected path Pnew improves the current
network state by a configurable threshold e and it reduces
the utilization of all links below Uthr, the corresponding set of
forwarding rules is installed in the nodes to redirect the traffic.
Else, the algorithm repeats the process for the next flow in F
in decreasing order of introduced load. In case that no flow
is chosen to be redirected, the controller does not take any
action. Notice, that the complexity required by the described
greedy searching process is affordable in an SDN architecture,

3

Fig. 4: Map of the office environment in which the experiments
are carried out.

where the controller has access to the required computational
and storage resources.

2) Avoiding Overloaded CPUs Policy: In fog computing
scenarios, nodes may become temporarily CPU hogged due
to the execution of local computations, which affects their
data forwarding capabilities. Thus, this policy excludes nodes
that suffer from a high CPU load from acting as forwarders
in the data plane. This policy executes the following greedy
algorithm:

1) Monitor CPU utilization in each node through periodic
reports (see Table I).

2) Determine the heaviest flow that is passing through
a node whose CPU utilization exceeds a configurable
threshold CPUth/. Compute the set C = {nl,"" nL}
containing the list of nodes being CPU hogged and
sorted in decreasing order of CPU utilization.

3) Compute a set P = {A, P2, ... , PK} of K alternative
paths that do not contain the node ni E C with highest
CPU load. If no alternative paths can be found, skip to
the next step.

4) Apply the same Pnew selection method used in the load
balancing policy to select a new path that avoids ni,
redirect the traffic and terminate the algorithm.

5) Repeat the process removing the next node, niH, from
C, until the flow can be redirected or C is empty and the
algorithm terminates.

III. EVALUATION

A. Testbed Description

The testbed used for the experimental evaluations consists
of5 Raspberry Pi B+ [10] nodes that are distributed on a single
office floor, building a mesh network as shown in Fig. 4. Each
Raspberry is equipped with two Wi-Fi dongles with ath9k

compatible chipsets. For each Raspberry, the two wireless
interfaces are chosen to operate at the 2.4 GHz band (channel
11) and at the 5 GHz band (channel 48), respectively.

While channel 48 has been found to be interference free,
on channel 11 we observe a low, constant background traffic.
Simultaneous communication over these two channels is pos
sible. The double links between the nodes in Fig. 4 indicate

2 A hysteresis margin is applied to filter out sporadic utilization peaks.

s0

s1

s2

s3

s4

�
.,:./ "� (J't. .•

�""Ch48····0·
.0 v- "C �

1'''-0
Interferer

(a)

(b)

Fig. 5: (a) Bannergraph topology for the interference aware
routing and flow balancing scenarios, using a mix of links on
channels 11 and 48 and (b) Bannergraph topology for the CPU
aware routing scenario, using only channel 11.

connectivity between each of the nodes' wireless interfaces
(on channel 11 and channel 48, respectively). In the chosen
network setup, each node is capable of seeing all other nodes
of the network. Thus, to generate topologies that are a subset
of the basic experimental topology, we implement MAC filters
that only allow logical connections between specific wireless
interfaces. Applying these filters, we generate a (4,1)-tadpole
(bannergraph) topology, where we analyze three experimental
scenarios to show and explain the reaction of the presented
SDN forwarding policies to certain network states. In all of
these scenarios, data flows are generated from agent node
sO towards gateway node s4. The access traffic entering the
network at sO is generated by a host device (laptop) that is
connected over Ethernet with the Raspberry. Further, we set
the utilization threshold Uthr to 15%3, and the CPU threshold
CPUthr to 80%.
B. Experimental Evaluation

Next, we describe the three experimental scenarios and show
the results of the evaluations.

1) Interference Aware routing: In this scenario we illustrate
how the SDN controller is able to redirect a data flow
after detecting external interference. The setup used for this
experiment is shown in Fig. 5a, which depicts the wireless
channels of the links set up between the nodes, as well as
an external interferer that operates on channel 48. During the
bootstrapping phase, a set of forwarding rules is installed in the
nodes directing traffic from sO to s4 via sl and s2 over channel
48 which does not suffer from noise. Then, a flow from sO to
s4

'
with a data rate of 2 Mbit/s is generated. Figure 6a depicts

3 A low threshold is chosen for the validation to provoke reallocation
policies even at low traffic levels.

4

100 200

200

300 400 500
Time (s)
(a)

300 400
Time (s)
(b)

600 700 800

800

Fig. 6: (a) Throughput measured over the link from sO to sl
and (b) channel load observed by s 1 during the interference
aware routing experiment.

the throughput statistics gathered for the link between sO and
sl at the controller. Figure 6b displays the channel loads on
channels 11 and 48 reported by node sl to the controller,
including the background traffic (channel 11, rv 10%) and
signalling traffic (channel 48, rv 1 %).

Once the 2 Mbit/s data flow enters the network, the load of
channel 48 increases to approximately 15% (t=80 s). Around
300 s into the experiment, the interferer starts transmitting on
channel 48, clearly visible by a sudden peak of channel load.
At this point the SDN algorithm estimates a better network
state and redirects the flow over channel 11, using s3 as
relay. After applying the reallocation, the load on channel 48
settles to a steady 30%. On the other hand, the channel load
of channel 11 increases since now the flow is reaching s4
via s3. At t=450 s, the interferer stops transmitting and the
load on channel 48 drops to around 5%. Since the load on
channel 11 is still above Uthr = 15%, the controller decides
to balance the network load again: shortly after the 500 s mark,
the algorithm switches the data flow back to channel 48. This
status is maintained until the flow stops at t=680 s and the
network returns to its initial state.

2) Flow balancing: The setup depicted in Fig. 5a is used
again, however, without the interferer. At the beginning of the
experiment, a 1 Mbitls flow is generated, which is initially sent
over channel 48 towards s2 (Fig. 7a). The resulting channel
loads observed by sl's wireless interfaces are depicted in Fig.
7b.

A second 2 Mbit/s flow is introduced at around t=330 s
and forwarded as well over s2 on channel 48, leading to a
peak in the reported channel load. Consequently, the SDN
controller decides to balance the flows by redirecting the small
1 Mbit/s flow via s3 over channel 11. This effectively balances

X 10' 2.51----,-------,---,---------,---r==:==�
2

�
�15
:5 .
Cl.

.c
g> 1
o
.c f- 0.5

1il 40
.Q
� 30
c
ro t3 20

200 400

2 MbiVs Flow (start)

\

200 400

600
Time (s)
(a)

600
Time (s)
(b)

800 1000 1200

800 1000

Fig. 7: Throughput measured over the links connecting sl
with s2 and s3 (a) and channel load observed during the load
balancing experiment.

the network load over the two available wireless channels
(Fig. 7b). This configuration is maintained until the end of
the experiment.

3) CPU aware routing: In the last experiment, the CPU
aware routing policy is evaluated, using the setup depicted in
Fig. 5b, where all links are on channel 11. A 1 Mbit/s flow is
created at t=40 s, using s3 as relay node between sl and s4,
as can be derived from Fig. 8a. At approximately t=240 s, a
CPU-intensive task is started in s3, boosting the CPU load to
100% (Fig. 8b). The SDN controller reacts to the increased
CPU load by redirecting the flow over s2, thus alleviating s3
from data forwarding tasks and granting it more processing
power to perform the computing task. After s3's processing
finishes, the chosen path is maintained until the end of the
experiment, because no further route changes are triggered
due to CPU loads above the threshold.

IV. CONCLUSIONS

In this paper we present a wireless SDN-based architec
ture for networks of constrained edge devices. The proposed
architecture features SDN control of wireless mesh networks,
along with two path forwarding policies that are tailored to the
requirements of networks of constrained devices: a network
flow balancing policy that avoids heavy link congestion, and a
CPU load aware policy that alleviates the workload of nodes
by dynamically excluding from routing tasks for the data
plane. Experiments carried out in a real testbed of constrained
devices demonstrate that the architecture and the network
policies are correctly implemented and executed.

5

X 10'
14
12

<n @. 10
:;
Cl.

8
.c
Ol 6 =>
2

.c 4 f-

2
0 0 100

100

200

200

300
Time (s)
(a)

300
Time (s)

(b)

400 500

Fig. 8: Throughput measured at node sl (a) and CPU load
measured for node s3 (b) during the CPU aware routing
experiment.

V. ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union under grant agreements 618098, and
671551 (H2020 5G-XHaul), and from the Spanish Ministry
of Economy and Competitiveness (MINECO), under research
grant TEC2013-47960-C4-4-P.

REFERENCES

[1] Akyildiz, Ian F., Xudong Wang, and Weilin Wang. "Wireless mesh
networks: a survey." Computer networks 47.4 (2005): 445-487.

[2] Bonomi, Flavio, et al. "Fog computing and its role in the internet of
things." Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. ACM, 2012.

[3] Hurtado-Borras, A.; Pala-Sole, J.; Camps-Mur, D.; Sallent-Ribes, S.,
"SDN wireless backhauling for Small Cells," in Communications (ICC),
2015 IEEE International Conference on , vol., no., pp.3897-3902, 8-12
June 2015

[4] Seppnen, Kari, Jorma Kilpi, and Tapio Suihko. "Integrating WMN based
mobile backhaul with SDN control." Mobile Networks and Applications
20.1 (2015): 32-39.

[5] Detti, Andrea, et al. "Wireless mesh software defined networks
(wmSDN)." Wireless and Mobile Computing, Networking and Commu
nications (WiMob), 2013 IEEE 9th International Conference on. IEEE,
2013.

[6] Draves, Richard, Jitendra Padhye, and Brian Zill. "Routing in multi
radio, multi-hop wireless mesh networks." Proceedings of the 10th annual
international conference on Mobile computing and networking. ACM,
2004.

[7] K shortest path implementation available at:
http://jgrapht.org/javadoc/org/jgrapht/alg/KShortestPaths.html

[8] The Open Flow Switch Specification. Available at:
https:!/www.opennetworking.org

[9] OpenDayLight, available at: http://www.opendaylight.org/
[10] Raspbery B+, available at: https:llwww.raspberrypi.org/products/model

b-plusl

