
A Software Development Kit to exploit RINA
programmability

Vincenzo Maffione, Francesco Salvestrini
Nextworks
Pisa, Italy

Email: {v.maffione, f.salvestrini}@nextworks.it

Eduard Grasa, Leonardo Bergesio, Miquel Tarzan
Fundacio I2CAT
Barcelona, Spain

Email: {eduard.grasa, leonardo.bergesio, miquel.tarzan}@i2cat.net

Abstract—The Recursive InterNetwork Architecture (RINA)

is a general architecture for all forms of computer networking,

based on a single type of programmable layer that recurs as

many times as required by the network designer. The recursion

and programmability aspects of RINA are key to design flexible,

heterogeneous networks while still bounding their complexity. In

this paper we show how the programmability enabled by the

RINA architecture can be exploited in practice by means of a

Software Development Kit (SDK) developed for IRATI, the open

source RINA implementation. A proof of concept validation of

the SDK is carried out by experimenting with multiple policies

in a distributed cloud network scenario.

I. INTRODUCTION AND MOTIVATION

Today’s networks have to cope with a great variety of
electronic devices - ranging from tiny, resource-constrained
sensors to high-performance machines in datacentres, includ-
ing fast-moving mobile devices - and with the evolution of dis-
tributed applications and protocols with their ever-increasing
differentiated requirements. Since networks are required to
be flexible enough to adapt to different situations, a catch-
all strategy for network design and administration is not
achievable. At the same time, complexity should be bounded
in order to limit the cost of management and security [1]. To
cope with differentiated requirements, the Internet community
constantly introduces new protocols, resulting into networks
becoming more and more complex to manage. Looking at the
IETF RFCs statistics [2], it can be seen that the number of
new RFCs per year is constantly increasing with no evidence
of a possible slowdown.

The Recursive InterNetwork Architecture (RINA) has re-
cently been proposed [3], [4] as a fundamental approach to
networking, to mitigate or overcome well-known limitations
of the current TCP/IP-based Internet architecture. RINA is
founded on the concept of networking as Inter Process Com-
munication (IPC). Whereas in the Internet architecture each
layer contains a different set of functionalities and offers
different APIs to the upper layers, RINA defines a single
programmable layer - known as Distributed IPC Facility (DIF)
- that contains all the functions that are needed to provide
IPC services to applications or higher level DIFs. Each DIF
provides IPC services over a limited scope, e.g. a LAN, a
campus network, an ISP network or the whole Internet. Each
host participating in a DIF must run a local agent for that
DIF, known as IPC Process (IPCP). The DIF itself is therefore

Host

Border router Interior Router

DIF

DIF DIF

Border router

DIF DIF

DIF

Host

App##
A#

App##
B#

Consistent
API through

layers

App#A#

Layer (DIF) API

IPC#
Process#

1. Register/Unregister App
2. Allocate/Deallocate flows

3. Write data (SDUs) to flows
4. Read data (SDUs) from flows

5.  Get layer information

Fig. 1. An example of the structure of RINA

a distributed application that exposes an API to provide IPC
services to its users. Recursion in RINA is used to build wider-
scope DIFs on top of smaller-scope ones: a DIF at level N uses
the IPC services offered by one or more DIFs at level N � 1,
as illustrated in Figure 1. DIFs at the lowest level are known
as shim DIFs: they provide the DIF API, with limited IPC
services, by directly wrapping existing legacy technologies
(e.g. Ethernet, WiFi, TCP/IP, ...) rather than using lower level
DIFs.

The RINA architecture specifies the different functions (or
components) contained in the DIF, and a set of variable
behaviours (policies) for each function. This allows the net-
work administrator to properly select policies for each DIF
depending on its scope, the environment where it operates,
and the kind of service provided by its lower level DIFs.

The main contribution of this paper is the design and
implementation of a Software Development Kit (SDK) to
support DIF programmability on top of the IRATI open-source
RINA prototype [5] [6]. We believe that programmability in
RINA is the key to bound network complexity and limit the
cost of network administration. When new requirements arise
for a network, the designer can select or write new policies
for the involved DIFs, without the need of introducing new
protocols. The SDK allows DIF policies to be dynamically
replaced while the network is operating, without causing IPC
service disruption.

In the rest of this paper, section II contains an overview
of the advantages of RINA in terms of virtualization and
programmability, and a comparison with related work. Section

III reports our main contribution, the design of a SDK for the
IRATI prototype. Section IV provides a Proof of Concept eval-
uation of the SDK. Finally, section V contains our conclusions
and future work.

II. THE RINA ALTERNATIVE APPROACH: COMPARISON TO
RELATED WORK

Results analyzing the advantages of RINA over other ap-
proaches to network architecture have been already published
in scientific forums. In [7] Ishakian et al. show that RINA
supports multihoming and mobility with less cost and more
performance than mobile IP [8] and LISP [9]. Trouva et al.
[10] perform an initial analysis on why RINA provides a better
framework than the current Internet for supporting transport
over heterogeneous networks. In [11] Trouva et al. discuss
how applications can dynamically be discovered across layers
and how new layers can be created on the fly. Bodappati et
al. [12] shows that because of the decoupling of transport
port allocation and access control from data synchronization
and transfer, RINA is much more resilient than TCP/IP to
transport-level attacks such as port-scanning, connection open-
ing or data-transfer. Van der Meer at al. [13] highlight that
the commonality and autonomic properties exhibited by RINA
layers provide an ideal environment to explore automated and
responsive network management approaches.

Since this paper is focused on the recursion and pro-
grammability aspects of RINA, we motivate our contribution
by providing an initial comparison of RINA with related work
on these areas.

A. Recursion and virtualization

Current networks are based on a layered architecture where
each layer has a different function (physical, data link, net-
work, transport). Layers are used as units of modularity and
functional decomposition rather than as a tool to isolate dif-
ferent scopes. As described in the next paragraphs this model
does not work in practice and requires extensions (such as
“virtual layers” or “layers 2.5”) to accommodate the required
differences in scope found in real networks.

IEEE 802.1Q (VLANs) allows to multiplex up to 4094
independent broadcast domains over the same Ethernet net-
work. The scope of each VLAN domain is the whole Ethernet
network or part of it. VLAN segmentation run early into
scalability problems: the limited VLAN-id space and the desire
of network providers to carry customer VLANs transparently
over their networks gave birth to the IEEE 802.1ad [14] (Q-
in-Q) standard, introducing another layer to multiplex several
customer VLANs transparently into a single provider VLAN.
IEEE 802.1ah [15] (PBB) further improved the separation
of customer and provider layers by including source and
destination MAC addresses in the provider Ethernet layer, thus
allowing the decoupling of the provider and customer routing.

Multi Protocol Label Switching (MPLS) is another example
of the need for a technology to isolate different scopes, in
this case to enable forwarding strategies that are independent
from the one used in the global Internet network layer.

Access DIF

Border
Router

Interior
Router

P2P DIF P2P DIF

Border
Router

P2P DIF

Interior
Router

P2P DIF

Border
Router

P2P DIF P2P DIF

Interior
Router

Border
Router

Provider 1 BB DIF

P2P DIF

Border
Router

Provider 1 Regional DIF

P2P DIF

Border
Router

Provider 1 Metropolitan DIF

P2P DIF

Public Internet DIF

Application-specific DIF

Provider 1 network

Fig. 2. Service provider network design with RINA, using DIFs with different
scopes and requirements

Service providers deploy MPLS as an extra layer (known as
layer 2.5) on top of the data-link layer in order to tightly
control the forwarding of traffic across their networks, usually
applying Traffic Engineering (TE) techniques to support the
QoS requirements of their customers. MPLS defines a protocol
header containing a label used by MPLS-enabled devices to
decide how to forward packets. MPLS headers can be stacked
(following the same pattern as Q-in-Q or PBB) enabling
multiplexing of higher MPLS layers onto lower MPLS layers.
Label stacking can be used to support L2 or L3 Virtual Pri-
vate Networks (VPN) [16], where the provider infrastructure
supports independent scopes dedicated to different customers.

Datacentre (DC) networks also require isolating different
scopes, specially to support multi-tenancy [17]. Multi-tenancy
allows a DC provider to partition its infrastructure into inde-
pendent networking domains dedicated to different customers
and/or applications. It is desirable that functions at each
domain are adaptable to the customer requirements. A way to
achieve multi-tenancy would be to use the protocols and tech-
niques described in the previous paragraphs (VLANs, PBB,
MPLS). However, since these protocols have been designed
for network service provider environments, other approaches
better suited to some DC environments have been developed
under the umbrella of the “overlay virtual networks” concept.
The main idea is to introduce per-tenant “virtual network
stacks” (L2 to L4), usually with their dedicated control plane.
These extra layers are implemented on the DC servers and
overlaid on top of the DC fabric’s transport layer using a
tunneling protocol such as VXLAN, STT or NVGRE [18].

These examples show that while traditional network ar-
chitecture starts from a limited set of layers with different
functions, it ends up with a wider set of layers with repeated
functions that are used to isolate different scopes.

In contrast, RINA can support differences in scope in
a natural way, without introducing new concepts (such as
network virtualization), types of layers nor protocols. Since
the architecture provides a variable number of programmable
layers the network designer can use them to create customized,
independent networking environments. The functions in each
layer can be customized to the layer’s operational environment,
as described in section II-B. Figure 2 illustrates a potential

design for an ISP, with a number of internal DIFs supporting
public Internet and VPN services for its customers. The ISP
uses three internal layers to aggregate and transport the traffic
between its points of presence: the metropolitan DIF brings
together all the metropolitan networks which connect to cus-
tomers or other ISPs; the regional DIF aggregates the traffic of
the metropolitan areas and provides inter-metro connectivity;
while the backbone DIF aggregates the traffic of the regional
areas and provides inter-region connectivity.

The recursive nature of RINA, therefore, allows to use
the DIF basic block at different scopes and with different
policies. By reusing the same DIF API and mechanisms
there is no need to introduce new protocols. New layers
can be added dynamically and without requiring additional
hardware/software support.

B. Programmability

Work on adaptive, programmable networks capable of ac-
commodating to different operational environments and to sup-
port ever-changing application requirements has been carried
out for more than 20 years [19]. In [20] Campbell argues
that programmable networks are key to the rapid creation
and deployment of new network services, and surveys the
programmable network proposals of the time, which can be
roughly divided between the open signaling (OPENSIG) and
active networks approaches. OPENSIG argued for a set of
open, programmable network interfaces that provided external
programs access to the internal state and control of network
devices. Active networks advocated the dynamic deployment
of network services at runtime, via special packets containing
executable code and similar mechanisms.

The OPENSIG efforts crystalized on standards such as
i) the IETF General Switch Management Protocol (GSMP)
[21], which enabled the partitioning of a label switch (ATM,
Ethernet) into multiple ”virtual switches”, allowing external
controllers to manage the ”virtual switches” via the GSMP
protocol; ii) the IETF FORCES initiative [22], which de-
fines a framework and associated protocols to standardize
the information exchange between the control and forwarding
planes of an IP network element; and iii) the IEEE P1520
[23] standard project, which aimed at establishing a reference
model for networks APIs. Although these technologies saw
some deployments, they never gained the traction that the
current Software Defined Networking (SDN) trend has in the
networking industry and research communities. SDN can be
seen as a re-incarnation of OPENSIG, which initially used the
OpenFlow protocol as a means to control the forwarding of
TCP, UDP, IP and Ethernet packets through network nodes
from an external controller (in a similar way to GSMP).

A number of limitations have already been identified for
the first wave of SDN technologies. First, the flexibility of
OpenFlow as the protocol between the controller and the
device being controlled: since SDN does not specify a network
architecture, the controller-device protocol should be able to
define rules on arbitrary fields in order to be evolvable. Flex-
ible interfaces to define mechanisms for parsing packets and

!!DIF!

System'
'(Host)'

IPCP

IPCP

MA System'
(Router)'

IPCP IPCP

IPCP

MA
System'
(Host)'

IPCP

IPCP

MA

DIF! DIF!

IPCAPI
Data'Transfer' Data'Transfer'Control' Layer'Management'

Delimi+ng$

Data!Transfer!!

Relaying$&$
Mul+plex.$

SDU$
Protec+on$

Retransmission!
Control!

Flow!Control!

RIB$
Daemon$

RIB$

CDAP$

CACEP$

Rou+ng$

Flow$Alloca+on$

Resource$
Alloca+on$

Enrollment$

Auth$

State!
V
ector!
State!
V
ector!
State$
Vector$

Data!Transfer!!DTP$

Retransmission!
Control!Retx.$

Control$

Flow!Control!

Flow$
Control$ Namespace$$

Management$
Security$

Management$

Fig. 3. The programmable functions of a layer

matching header fields such as P4 [24] are being researched
to address this issue. Another problem is the scalability and
resiliency of centralized controllers; approaches to distributed
SDN control in order to improve resiliency [25] and allow for
per-domain controllers [26] are being investigated. Recursive
SDN controllers are also foreseen to allow for the partitioning
and control of network resources at more granular scopes [27].

RINA takes a different approach to network programma-
bility, leveraging the fact that it is a working hypothesis
for a general theory of computer networking. The functions
performed by each layer, illustrated in Figure 3, can be di-
vided in three categories of growing timescale and complexity
[4]: data transfer (forwarding/sending/receiving PDUs), data
transfer control (flow and retransmission control) and layer
management (enrollment of new IPCPs, routing, namespace
management, flow allocation, resource allocation, IPCP au-
thentication, application access control, security). RINA uses
the principle of separation of mechanism and policy to support
programmability. Mechanism is the invariant, fixed part of
DIF functions, while policy is the variable, programmable
behavior of the functions that can be adapted to the partic-
ular scenario where the DIF is operating. For example, all
layer management functions use the same protocol (CDAP,
the Common Distributed Application Protocol) to exchange
information with their peers, but the objects being exchanged
using the protocol can vary. As another example, all DIFs have
the same mechanism for packet forwarding, but the packet
scheduling policy can be programmed.

Implementing new policies is the way to cope with new
or unexpected requirements, rather than designing and imple-
menting new full-fledged protocols. As reported in section III,
hot-replacement of policies is possible, and does not cause
IPC service disruption (e.g. deallocation of application flows).

Since in RINA all layers reuse the same extensible data
transfer protocol (EFCP, the Error and Flow Control Protocol)
[28] there is no need to define mechanisms for generic header
matching like in [24]. Moreover, due to the distributed nature
of its layer, RINA has the potential to mitigate the resiliency
and scalability issues of centralized layer management ap-
proaches, since responsibilites can be splitted across all the
IPCPs in a DIF. Centralized solutions are still possible, since

Normal IPC Process
(Layer management)

Normal IPC Process
(Data Transfer/Control)

User space

IRATI RINA implementation

Kernel

Error and Flow
Control Protocol

Relaying and
Multiplexing TaskSDU Protection

Policies

PoliciesPolicies

RIB & RIB
Daemon

Namespace
management

Flow
allocation

Policies

Resource
Allocation

Policies

Security
management

Policies PoliciesNetwork
Manager

(NMS DAF)

IPC Manager

IPCM
core

RIB

Management
Agent

(NMS DAF)

librina

IPC
Manager IPC Process

(layer mgmt)
Normal IPCP
(layer mgmt)

ApplicationApplication

Shim IPCP
over 802.1Q

Shim IPCP
over 802.1Q

Shim IPCP
over TCP/UDP

Shim IPCP
over TCP/UDP

Kernel IPC Manager

Normal IPCP
(Data transfer)

Normal IPCP
(Data Transfer)

librina

Routing

Policies

Enrollment

Policies

Fig. 4. Software components of the IRATI implementation and their policies
supported by the SDK

RINA nodes can export the local IPCP RIBs to a remote entity,
e.g. a central Manager. Layer management could therefore be
implemented by the Manager remotely accessing the RIBs
through the CDAP protocol.

In contrast with SDN, programmability of the layer func-
tions is not limited to packet forwarding; policies can be
implemented for transmission control, flow control, resource
scheduling, multiplexing, routing, authentication, encryption,
etc, as reported in section III.

III. DESIGN AND IMPLEMENTATION OF AN SDK TO MAKE
THE IRATI IMPLEMENTATION PROGRAMMABLE

After a brief introduction to IRATI RINA implementation,
this section presents our contribution: a SDK to support RINA
programmability in IRATI (illustrated in Figure 4).

A. Introduction to the IRATI RINA implementation

The IRATI RINA open-source implementation is the main
outcome of the FP7-IRATI project, targeting Linux-based
operating systems. In IRATI, the implementation of DIF
functions is splitted between user-space and kernel-space.
Data transfer and device low-level access functionalities are
implemented in kernel-space, while layer management func-
tionalities are implemented in user-space. The software is
organized in four packages:

• Modified version of the 4.1.16 Linux kernel, including
system call support for managing IPCP and packet I/O,
data transfer functionalities and shim DIFs (see section
I).

• librina, the main library to be used by applications to
access the DIF API (flow allocation, application registra-
tion, packet I/O).

• rinad, containing the implementation of userspace parts
of the DIF functions, i.e. the layer management functions.

• rina-tools, containing testing tools to generate or receive
RINA traffic.

The IRATI stack uses different daemons on the hosts where
it runs. An IPCP daemon is run for each DIF the host is
part of. This daemon represents an IPCP and implements the
managment functions of the DIF. In addition to the IPCP

daemons, a single IPC Manager (IPCM) daemon is in charge
of i) controlling the life-cycle of all the IPCPs on the host,
and ii) acting as a message broker between applications, kernel
and IPCP daemons. These messages are used to implement the
layer management functions, like the flow allocation procedure
which involves both applications and IPCPs. Applications,
instead, send and receive data packets using system calls,
without the need to interact with the IPCM.

B. SDK requirements
RINA defines a clear separation between mechanism and

policy, as explained in section II-B. The RINA specifications
define the different policy points where the IPCP behaviour
can be programmed, together with a default behaviour. As an
example, a PDU scheduling policy is defined in the Relay and
Multiplexing Task (RMT) component of the IPCP. Each time
the RMT wants to dequeue a PDU from its input or output
queues, this policy is invoked to decide what queue should be
served first. Each internal component of the IPCP has a well
defined set of policy points that may be tweaked to adapt the
component’s behaviour.

Each IPCP running in a host can be programmed inde-
pendently. This is a fundamental requirement, since different
IPCPs in the same host (typically) belong to different DIFs,
and so need different behaviours to adapt to different scopes
and enviroments.

In addition to the default one, several policies can be defined
on the same policy point. This is an important requirement,
since the needs of a specific IPCP may change over time, and
therefore an on-line replacement may be convenient.

The code of a policy may need to interact with the data
model of the associated component to get information or
update its data structures. In IRATI, the points where policies
are invoked can correspond to either user-space or kernel-
space code, depending on the related IPCP component. The
scheduling policy of the RMT, as an example, is part of the
kernel-space code. The SDK must provide mechanisms to
“plug-in” (i.e. dynamically load) either user-space and kernel-
space policy code at run-time, and to replace policies for
components while their are running (e.g. processing PDUs).

Policies are not necessarily independent of each other, but
may interact or cooperate, e.g. there may be some state
shared by different policies. The possible interactions de-
pend on algorithms and implementations. As an example,
an RMT scheduling policy implementing priority based on
a traffic classification scheme may have to cooperate with
the RMT Queue Monitoring policy (invoked when PDUs
are enqueued/dequeued) in order to keep the shared data
structures required by the priority algorithm. In other words,
a plugin may need cooperating policies in order to implement
a higher level strategy, e.g. a priority based packet classifier
and scheduler.

C. SDK design
With these requirements in mind, we designed and inte-

grated into IRATI a SDK that allows for dynamic loading of
policy plugins and hot-replacing of policies.

IPC Process

RMT
Flow

Allocator
EFCP

container

Flow
18

Flow
271

DTP DTCP DTP DTCP

Security
Manager

rmt-ecn

dtcp-ecn

passwd
PFF

default

Routing

Link
state

Fig. 5. A simplified version of the IPCP components tree model. The root
represents the IPCP itself, blue nodes are the IPCP components, and red nodes
are policy-sets.

To allow cooperation among policies, the policy-set concept
was introduced. A policy-set defines a group of different policy
points, as defined in the RINA architecture, that may want to
cooperate with each other. After an analysis of the defined
policy points and the expected interactions, we decided to
group them on a per-component basis, so that each component
of the IPCP has its policy-set. The reason of this choice is that
most of the interactions happen between policies belonging to
the same component. Possible interactions between policies of
different components can still be handled through interactions
between components as allowed by the IRATI internal APIs.

The policy-set is also the atomic unit that the SDK can
load and instantiate on components. A plugin may contain one
or more policy-sets - for the same or different components.
At plugin loading time, the policy sets contained in it are
published (loaded) into the SDK, and made available for later
instantiation on running components. Unloading of a plugin
can happen only when there are no more running instances
of any of its policy-sets. Therefore, a per-plugin reference
counting mechanism was necessary.

A policy-set instance holds a reference to its associated
component instance, to interact with it using a per-component
ad-hoc API. These APIs allow policy code to access the
component data model in a controlled way: only the required
functionality is exposed, while critical data structures can be
hidden.

To enable policy-set instantiation and replacement, all the
IPCP components have been extended to accept or propagate
a replacement configuration message. For this purpose, we
modeled the IPCP structure as a tree of components with the
IPCP itself at its root, as illustrated in Figure 5. Given two
components X and Y, X is a child of Y if and only if X is
a subcomponent of Y. As an example, the PDU Forwarding
Function (PFF) component is a child of the RMT. Moreover,
also policy-sets are modeled as children of the components
they are associated to. The configuration messages are issued
by the IPCM daemon and sent to the IPCP to be configured
through the IRATI netlink infrastructure. A message contains
the name of the replacing policy-sets and a string identifying
the specific component to address. The identifier specifies the

uinque path in the tree that connects the component from the
root, in dotted notation. The message is forwarded by each
IPCP component in the path, following the order specified
by the identifier. The addressed component (the last in the
path) will not forward but accept the message, instantiate
the specified policy set and replace the current one. This
hierarchical policy configuration approach has been designed
to be extensible and modular.

Finally, some policies may want to expose implementation-
specific tunable parameters to the DIF administrator. As an ex-
ample, an RMT scheduling policy may have some algorithm-
specific thresholds that can be adjusted to tune performance.
The SDK supports modification of such parameters with an ad-
ditional configuration message that is delivered to the involved
policy-set using the same hierarchical delivery mechanism
described above.

D. User-space plugin infrastructure

User-space plugins are implemented as shared objects (i.e.
dynamic libraries) dynamically loaded by the IPCP daemons
using the libdl library. Since IRATI user-space code is writ-
ten in C++, we used Object Oriented (OO) techniques to
implement SDK support. Each policy-set is represented by
an abstract class whose interface contains the policy methods
specified for the associated IPCP component. Plugins provide
implementation for policy-sets by deriving concrete classes
from the abstract ones. Abstract classes contain a reference
to their associated IPCP component, so that the concrete
implementation can access the ad-hoc component API.

The abstract factory design pattern is used to instantiate
and destroy policy-set classes 1. When an IPCP daemon loads
a plugin, it obtains policy-set factories for all the published
policy-set classes.

E. Kernel-space plugin infrastructure

Kernel-space plugins are implemented as Loadable Kernel
Modules (LKMs) and loaded in the running IRATI kernel by
the IPCM daemon. Although kernel-space code is written in
C, we used OO techniques similar to those reported in section
III-D. A policy-set is represented as a C struct containing
function pointers (one for each policy point) and a reference
to its associated component. Plugins provide implementations
for those functions. At plugin loading time, factories for all
published policy-sets are registered to the kernel-space SDK
and become available to the DIF administrator. In order to
support hot-replacing of policy sets with very low locking
overhead for read operations, all references to policy-set
instances are protected by RCU [29] locks.

F. Policy Catalog

The Policy Catalog is a submodule of the IPCM daemon that
has been implemented to carry out coordination tasks related
to the SDK, including:

• (Un)Load kernel-space plugins (LKMs)

1This was necessary because C++ mangled symbols (e.g. class constructors)
cannot be invoked across the shared object boundary

Backbone DIF

Subnetwork 2

Shim DIF

Cloud DIF

Region 1

Region 8 Region 7

SubDIF 2 Region 3

Region 6

SubDIF 4

Region 5Cloud DIF

Backbone DIF

 Shim DIF

Shim DIF Shim DIF Shim DIFShim DIF ……

…

Tenant DIF A

Tenant DIF B

Tenant DIF C

Tenant DIF D

Tenant DIF A

Tenant DIF B

Fig. 6. Distributed cloud network layers

• Ask IPCP daemons to (un)load user-space plugins
• Issue policy-set configuration messages
• Issue messages to configure tunable parameters
• Keep track of loaded plugins and policy-sets
• Keep track of the currently used policy-sets for the

components of each IPCP running in the host

IV. PROOF OF CONCEPT VALIDATION

In this section we experimentally validate the functionalites
of the SDK and probe the adaptability of RINA in practice
by means of an experiment that designs the network of
a distributed cloud service provider using RINA. Servers
providing the cloud’s computing power are not located in
datacentres but in people homes, offices, etc. The DIF structure
for the distributed cloud network, illustrated in Figure 6, is
composed of three types of DIFs: i) multiple tenant DIFs
floating on top of the cloud DIF, providing a customized and
isolated networking environment to each tenant; ii) a cloud
DIF divided in multiple regions that brings all the distributed
cloud servers in a single resource pool and iii) a Backbone
DIF that supports aggregation of traffic and provides direct
inter-region connectivity to the cloud DIF.

All DIFs have the same structure and protocols, but con-
figured with different policies. Although a full discussion of
the different policies used in each DIF is not included for
space reasons, next subsections focus on two examples that
illustrate the possibilities enabled by our SDK implementation:
programming the IPCP’s data transfer functions to implement
congestion control strategies and programming the IPCP’s
layer management functions to customize the routing algo-
rithm for a DIF.

A. Data transfer programmability: congestion control

By defining a custom policy-set for EFCP (RINA’s data
transfer protocol) and a custom policy-set for RMT (which
is in charge of forwarding and multiplexing packets over N-1
flows), we implemented two congestion control (CC) solutions
based on a combination of window-based flow-control and
Explicit Congestion Notification (ECN). In both solutions all
the data transfer (EFCP) connections in the DIF are flow-
controlled by the EFCP receiver, regardless of the reliability
of the connection. RMTs in the IPCPs between the sender and
the receiver monitor their queues; if the queue size goes over

Mbps

seconds

Mbps

seconds

Packets

Packets

Fig. 7. On top, RED+TCP CC policies. At bottom, DEC binary feedback
CC policies. On the left, throughput(Mbps) vs. time(s). On the right, RMT
queue occupation(packets).

a certain threshold, pakets are marked with an ECN flag. The
EFCP protocol machine at the receiver IPCP checks the ECN
flag of the received packets; reducing or increasing the sender’s
credit depending on the ECN marks. One solution adapts
DEC’s binary feedback scheme for congestion avoidance [30]
to the DIF environment, while the other uses the Random Early
Detection (RED) algorithm [31] to mark packets in the RMT
and an adaptation of TCP Tahoe’s congestion management
algorithm in the EFCP receiver.

Both CC solutions can be used by cloud DIF and the
backbone DIF. Figure 7 shows the results of both solutions in
action when 4 parallel flows in the cloud DIF use a physical
link with 50 Mbps bandwidth. The Figures show that in both
cases the flows share the link bandwidth in a fair way, having a
higher RMT queue occupation in the RED-TCP solution than
in the DEC’s one, as expected.

Each CC solution is implemented as a kernel-space plugin
packaging a couple of policy-sets, using about 1000 lines of
C code, including the implementation of specific RMT/EFCP
functionality, factory interfaces, module initialization and
cleanup.

B. Layer management programmability: routing

Routing algorithms have two main tasks: maintain a con-
sistent distributed view of the routing information across
the routing peers, and computing routes based on that in-
formation. In order to realize the first task, RINA routing
policies can leverage the layer management functions: the
Resource Information Base (RIB) as a distributed database
and the CDAP protocol to access peers’ RIBs. In this way
the effort of specifying and implementing routing algorithms
is considerably reduced, since developers can focus on graph
algorithm and distributed database strategies, rather than on
information exchange format and serialization.

We ported the IRATI link-state routing algorithm implemen-
tation to the SDK, by separating the specific link-state routing
code into its own policy-set. The link-state implementation
defines a set of RIB objects to model the routing information
exchanged with peers: a link-state database containing multi-
ple entries. Each entry describes a flow (i.e. a link) between
two neighbor IPCPs. Once an IPCP has the complete graph
of the IPCPs in the DIF, it uses a Shortest-Path algorithm
to compute its routing table towards all the other nodes.
Link-state database entries are exchanged by means of CDAP
operations, that allow an IPCP to create, delete, or read remote
RIB objects.

The link-state routing policy-set is implemented in about
1500 lines of C++ code.

V. CONCLUSIONS AND FUTURE WORK

When dealing with unexpected and ever-changing user
requirements, RINA allows network design to transition from
devising new protocols to defining new policies for a reduced
set of well-defined DIF components. The SDK presented in
this paper shows a practical realization of this approach,
enabling the programmability of a C/C++ RINA implemen-
tation for Linux operating systems. The SDK allows network
architects and administrators to configure each layer with the
policies that are most appropriate to its scope and operating
environment. Since the introduction of new policies is part
of the RINA architecture, the SDK has the potential to
reduce the involved efforts in terms of design, implementation
and deployment, as compared with the introduction of new
protocols.

To fully validate our SDK implementation and the policy
points defined by RINA specifications, we are actively de-
veloping new plugins and setting up large experimentation
scenarios with frequently switching policies.

ACKNOWLEDGMENT

This work is partly funded by the European Commission
through the FP7 PRISTINE project (Grant 619305). The
authors would like to thank all PRISTINE partners that con-
tributed to the design and development of the SDK.

REFERENCES

[1] B. Schneier, “A plea for simplicity: You can’t secure what you don’t
understand,” Information Security, 1999.

[2] (2014, Apr.) Document Stats – What is Going on in the IETF?
[Online]. Available: http://www.arkko.com/tools/rfcstats/pubdistr.html

[3] J. Day, Patterns in network architecture: A return to fundamentals.
Pearson Education, 2007.

[4] J. Day, I. Matta, and K. Mattar, “”Networking is IPC”: A Guiding
Principle to a Better Internet,” in Proceedings of the 2008 ACM CoNEXT
Conference, 2008.

[5] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan,
and L. Bergesio, “Prototyping the Recursive InterNet Architecture: The
IRATI project approach,” IEEE Network, March 2014.

[6] (2015, October) Irati rina implementation. [Online]. Available:
https://github.com/IRATI/stack/

[7] V. Ishakian, J. Akinwumi, F. Esposito, and I. Matta, “On supporting
mobility and multihoming in recursive internet architectures,” Comput.
Commun., vol. 35, no. 13, pp. 1561–1573, July July, 2012.

[8] J. A. C. Perkins, D. Johnson, “Mobility support in ipv6,” Internet
Engineering Task Force, Tech. Rep., 2011.

[9] D. M. D. L. D. Farinacci, V. Fuller, “The locator/id separation protocol
(lisp),” Internet Engineering Task Force, Tech. Rep., 2013.

[10] E. Trouva, E. Grasa, J. Day, I. Matta, L. T. Chitkushev, S. Bunch,
M. P. de Leon, P. Phelan, and X. Hesselbach-Serra, “Transport over
heterogeneous networks using the RINA architecture,” in Wired/Wireless
Internet Communications. Springer, 2011, pp. 297–308.

[11] E. Trouva, E. Grasa, J. Day, and S. Bunch, “Layer discovery in rina
networks,” in Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), 2012 IEEE 17th International Workshop
on, 2012, pp. 368–372.

[12] G. Boddapati, J. Day, I. Matta, and L. Chitkushev, “Assessing the secu-
rity of a clean-slate internet architecture,” Proceedings of the Network
Protocols (ICNP), 2012 20th IEEE International Conference on, 2012.

[13] S. van der Meer, J. Keeney, and L. Fallon, “Dynamically adaptive
policies for dynamically adaptive telecommunications networks,” Pro-
ceedings of IEEE 11th International Conference on Network and Service
Management, CNSM 2015, 2015.

[14] IEEE, “802.1ad - provider bridges,” International Standard, May 2006.
[15] ——, “802.1ah - provider backbone bridges,” International Standard,

June 2008.
[16] L. Cittadini, G. Di Battista, and M. Patrignani, “Recent advances

in networking, chapter 6, mpls virtual private networks,” online,
http://www.sigcomm.org/content/ebook, August 2013.

[17] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
IEEE Communications Surveys and Tutorials, vol. 15, no. 2, 2013.

[18] (2011, Oct.) Problem Statement: Overlay for Network Virtualization.
[Online]. Available: http://tools.ietf.org/html/draft-narten-nvo3-overlay-
problem-statement-01

[19] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open signaling for
atm, internet and mobile networks (opensig’98),” SIGCOMM Comput.
Commun. Rev., vol. 29, no. 1, 1999.

[20] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente,
and D. Villela, “A survey of programmable networks,” SIGCOMM
Comput. Commun. Rev., vol. 29, no. 2, 1999.

[21] A. Doria and K. Sundell, “Rfc 3294: General switch management
protocol (gsmp) applicability,” Internet Engineering Task Force, Tech.
Rep., 2002.

[22] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and
control element separation (forces) framework,” Internet Engineering
Task Force, Tech. Rep., 2004.

[23] J. Biswas, A. Lazar, J.-F. Huard, and K. Lim, “The ieee p1520 standards
initiative for programmable network interfaces,” IEEE Communications
Magazine, vol. 36, no. 10, October 1998.

[24] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, July 2014.

[25] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed
and robust sdn control plane for transactional network updates,” in
INFOCOM, 2015.

[26] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain
sdn controllers,” in Network Operations and Management Symposium
(NOMS), 2014 IEEE, 2014, pp. 1–4.

[27] O. N. Foundation, “Sdn architecture, issue 1,” Open Networking Foun-
dation, TR, Technical Reference SDN ARCH 1.0 06062014, 2014.

[28] K. Mattar, I. Matta, J. Day, V. Ishakian, and G. Gursun, “Declarative
transport: A customizable transport service for the future internet,” In
Proceedings of the 5th International Workshop on Networking Meets
Databases (NetDB 2009), 2009.

[29] (2015, Oct.) Read Copy Update documentation. [Online]. Available:
https://www.kernel.org/doc/Documentation/RCU/rcu.txt

[30] K. Ramakrishnan and R. Jain, “A binary feedback scheme for congestion
avoidance in computer networks with connectionless network layer,”
ACM Transactions on Computer Systems, vol. 8, no. 2, pp. 158–181,
1990.

[31] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trasactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

View publication statsView publication stats

